
Real-Time Workshop®

Embedded Coder™
Release Notes





Contents

Summary by Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Version 5.1 (R2008a) Real-Time Workshop® Embedded
Coder™ Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Version 5.0 (R2007b) Real-Time Workshop® Embedded
Coder™ Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Version 4.6.1 (R2007a+) Real-Time Workshop®

Embedded Coder™ Software . . . . . . . . . . . . . . . . . . . . . 22

Version 4.6 (R2007a) Real-Time Workshop® Embedded
Coder™ Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Version 4.5 (R2006b) Real-Time Workshop® Embedded
Coder™ Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Version 4.4.1 (R2006a+) Real-Time Workshop®

Embedded Coder™ Software . . . . . . . . . . . . . . . . . . . . . 41

Version 4.4 (R2006a) Real-Time Workshop® Embedded
Coder™ Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Version 4.3 (R14SP3) Real-Time Workshop® Embedded
Coder™ Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Version 4.2.1 (R14SP2+) Real-Time Workshop®

Embedded Coder™ Software . . . . . . . . . . . . . . . . . . . . . 60

Version 4.2 (R14SP2) Real-Time Workshop® Embedded
Coder™ Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Version 4.1 (R14SP1) Real-Time Workshop® Embedded
Coder™ Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

iii



Version 4.0 (R14) Real-Time Workshop® Embedded
Coder™ Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Version 3.2.1 (R13SP2) Real-Time Workshop® Embedded
Coder™ Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Version 3.2 (R13SP1+) Real-Time Workshop® Embedded
Coder™ Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Version 3.1 (R13SP1) Real-Time Workshop® Embedded
Coder™ Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Compatibility Summary for Real-Time Workshop®

Embedded Coder™ Software . . . . . . . . . . . . . . . . . . . . . 109

iv Contents



Real-Time Workshop® Embedded Coder™ Release Notes

Summary by Version
This table provides quick access to what’s new in each version. For
clarification, see “Using Release Notes” on page 2.

Version
(Release)

New Features
and Changes

Version
Compatibility
Considerations

Fixed Bugs
and Known
Problems

Related
Documentation
at Web Site

Latest Version
V5.1 (R2008a)

Yes
Details

No Bug Reports
Includes fixes

Printable Release
Notes: PDF

Current product
documentation

V5.0 (R2007b) Yes
Details

No Bug Reports
Includes fixes

No

V4.6.1 (R2007a+) No No Bug Reports
Includes fixes

No

V4.6 (R2007a) Yes
Details

No Bug Reports
Includes fixes

No

V4.5 (R2006b) Yes
Details

Yes
Summary

Bug Reports
Includes fixes

No

V4.4.1 (R2006a+) No No Bug Reports
Includes fixes

No

V4.4 (R2006a) Yes
Details

Yes
Summary

Bug Reports
Includes fixes

No

V4.3 (R14SP3) Yes
Details

Yes
Summary

Bug Reports
Includes fixes

No

V4.2.1 (R14SP2+) No No Bug Reports
Includes fixes

No

V4.2 (R14SP2) Yes
Details

Yes
Summary

Bug Reports
Includes fixes

No

V4.1 (R14SP1) Yes
Details

No Fixed bugs No

1

http://www.mathworks.com/support/bugreports/?product=EC&release;=R2008a
http://www.mathworks.com/support/bugreports/?product=EC&release;=R2008a
http://www.mathworks.com/access/helpdesk/help/pdf_doc/ecoder/rn.pdf
http://www.mathworks.com/access/helpdesk/help/toolbox/ecoder/
http://www.mathworks.com/access/helpdesk/help/toolbox/ecoder/
http://www.mathworks.com/support/bugreports/?product=EC&release;=R2007b
http://www.mathworks.com/support/bugreports/?product=EC&release;=R2007b
http://www.mathworks.com/support/bugreports/?product=EC&release;=R2007a%2B
http://www.mathworks.com/support/bugreports/?product=EC&release;=R2007a%2B
http://www.mathworks.com/support/bugreports/?product=EC&release;=R2007a
http://www.mathworks.com/support/bugreports/?product=EC&release;=R2007a
http://www.mathworks.com/support/bugreports/?product=EC&release;=R2006b
http://www.mathworks.com/support/bugreports/?product=EC&release;=R2006b
http://www.mathworks.com/support/bugreports/?product=EC&release;=R2006a%2B
http://www.mathworks.com/support/bugreports/?product=EC&release;=R2006a%2B
http://www.mathworks.com/support/bugreports/?product=EC&release;=R2006a
http://www.mathworks.com/support/bugreports/?product=EC&release;=R2006a
http://www.mathworks.com/support/bugreports/?product=EC&release;=R14SP3
http://www.mathworks.com/support/bugreports/?product=EC&release;=R14SP3
http://www.mathworks.com/support/bugreports/?product=EC&release;=R14SP2%2B
http://www.mathworks.com/support/bugreports/?product=EC&release;=R14SP2%2B
http://www.mathworks.com/support/bugreports/?product=EC&release;=R14SP2
http://www.mathworks.com/support/bugreports/?product=EC&release;=R14SP2


Real-Time Workshop® Embedded Coder™ Release Notes

Version
(Release)

New Features
and Changes

Version
Compatibility
Considerations

Fixed Bugs
and Known
Problems

Related
Documentation
at Web Site

V4.0 (R14) Yes
Details

Yes
Summary

Fixed bugs No

V3.2.1 (R13SP2) Yes
Details

No Fixed bugs V3.2.1 product
documentation

V3.2 (R13SP1+) Yes
Details

No No bug fixes No

V3.1 (R13SP1) Yes
Details

No No bug fixes No

Using Release Notes
Use release notes when upgrading to a newer version to learn about:

• New features

• Changes

• Potential impact on your existing files and practices

Review the release notes for other MathWorks™ products required for this
product (for example, MATLAB® or Simulink®) for enhancements, bugs, and
compatibility considerations that also might impact you.

If you are upgrading from a software version other than the most recent one,
review the release notes for all interim versions, not just for the version you
are installing. For example, when upgrading from V1.0 to V1.2, review the
release notes for V1.1 and V1.2.

What’s in the Release Notes

New Features and Changes

• New functionality

• Changes to existing functionality

2

http://www.mathworks.com/access/helpdesk_r13/help/toolbox/ecoder/ecoder.html
http://www.mathworks.com/access/helpdesk_r13/help/toolbox/ecoder/ecoder.html


Summary by Version

Version Compatibility Considerations
When a new feature or change introduces a reported incompatibility between
versions, the Compatibility Considerations subsection explains the impact.

Compatibility issues reported after the product is released appear under
Bug Reports at the MathWorks Web site. Bug fixes can sometimes result in
incompatibilities, so you should also review the fixed bugs in Bug Reports
for any compatibility impact.

Fixed Bugs and Known Problems

The MathWorks offers a user-searchable Bug Reports database so you can
view Bug Reports. The development team updates this database at release
time and as more information becomes available. This includes provisions
for any known workarounds or file replacements. Information is available
for bugs existing in or fixed in Release 14SP2 or later. Information is not
available for all bugs in earlier releases.

Access Bug Reports using your MathWorks Account.

3

http://www.mathworks.com/support/bugreports/
http://www.mathworks.com/support/bugreports/
http://www.mathworks.com/support/bugreports/


Real-Time Workshop® Embedded Coder™ Release Notes

Version 5.1 (R2008a) Real-Time Workshop® Embedded
Coder™ Software

This table summarizes what’s new in Version 5.1 (R2008a):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

No Bug Reports
Includes fixes

Printable Release
Notes: PDF

Current product
documentation

New features and changes introduced in this version are

• “New AUTOSAR Compliant Code Generation Capability and Demos” on
page 4

• “Bidirectional Traceability for Stateflow Charts and Embedded MATLAB
Functions” on page 5

• “Generated Code Enhancements” on page 7

• “Function Prototype Control Enhancements” on page 7

• “Improved MISRA-C Compliance for Matrix Math Utilities and Lookup
Block Utilities” on page 7

• “math.h Header File Inclusion Now Controllable Through Target Function
Library Customization” on page 7

• ““What’s This?” Context-Sensitive Help Available for Simulink®

Configuration Parameters Dialog” on page 8

• “New and Enhanced Demos” on page 8

New AUTOSAR Compliant Code Generation
Capability and Demos
Real-Time Workshop® Embedded Coder™ V5.1 (R2008a) provides
AUTOSAR-compliant code generation configurable by GUI, command
line functions, or AUTOSAR-compliant XML files. For information, see

4

http://www.mathworks.com/support/bugreports/?product=EC&release;=R2008a
http://www.mathworks.com/support/bugreports/?product=EC&release;=R2008a
http://www.mathworks.com/access/helpdesk/help/pdf_doc/ecoder/rn.pdf
http://www.mathworks.com/access/helpdesk/help/toolbox/ecoder/
http://www.mathworks.com/access/helpdesk/help/toolbox/ecoder/


Version 5.1 (R2008a) Real-Time Workshop® Embedded Coder™ Software

“Generating Code That Complies with AUTOSAR Standards” in the
Real-Time Workshop Embedded Coder User’s Guide documentation.

Select the new system target file autosar.tlc to access the AUTOSAR
Code Generation Options pane in the Configuration Parameters dialog
box. You can then launch the Model Interface dialog to access all options
for configuring AUTOSAR-compliant code generation and import/export to
and from XML files.

New functions provide command-line access to all AUTOSAR options. For
more information, see “Configuring AUTOSAR Options Programmatically” in
the Real-Time Workshop Embedded Coder User’s Guide documentation.

Also, two AUTOSAR demos are provided,
rtwdemo_autosar_roundtrip_script and
rtwdemo_autosar_legacy_script.

Bidirectional Traceability for Stateflow Charts and
Embedded MATLAB Functions
In previous releases, the Real-Time Workshop Embedded Coder software
provided bidirectional traceability for Simulink® blocks only. In R2008a,
bidirectional traceability is added between generated code and Stateflow®

chart objects and Embedded MATLAB™ scripts. For embedded real-time
(ERT) based targets, you can choose to include traceability comments in
the generated code. Using the enhanced traceability report, you can click
hyperlinks to go from a line of code to its corresponding item in the model. You
can also right-click an item in your model to find its corresponding line of code.

The following parameters are added or updated for bidirectional traceability:

Previous Parameter Location
and Name

New Parameter Location and
Name

Real-Time Workshop > General
pane: Generate HTML report

Real-Time Workshop > Report
pane: Create code generation
report

5



Real-Time Workshop® Embedded Coder™ Release Notes

Previous Parameter Location
and Name

New Parameter Location and
Name

Real-Time Workshop > General
pane: Launch report
automatically

Real-Time Workshop > Report
pane: Launch report
automatically

Real-Time Workshop > General
pane: Code-to-block highlighting

Real-Time Workshop > Report
pane: Code-to-model

Real-Time Workshop > General
pane: Block-to-code highlighting

Real-Time Workshop > Report
pane: Model-to-code

N/A Real-Time Workshop > Report
pane: Eliminated / virtual blocks

N/A Real-Time Workshop > Report
pane: Traceable Simulink blocks

N/A Real-Time Workshop > Report
pane: Traceable Stateflow
objects

N/A Real-Time Workshop > Report
pane: Traceable Embedded
MATLAB functions

Real-Time
Workshop > Comments pane:
Simulink block comments

Real-Time
Workshop > Comments pane:
Simulink block / Stateflow
comments

Also, the right-click Real-Time Workshop > Highlight Code menu option
is now Real-Time Workshop > Navigate to Code.

For more information, see “Traceability of Stateflow Objects in Generated
Code” in the Stateflow and Stateflow® Coder™ documentation, “Using
Traceability in Embedded MATLAB Function Blocks” in the Simulink
documentation, and “Creating and Using a Code Generation Report” in the
Real-Time Workshop Embedded Coder documentation.

6



Version 5.1 (R2008a) Real-Time Workshop® Embedded Coder™ Software

Generated Code Enhancements
In R2008a, code generation is enhanced to

• Enable cross product optimizations between Simulink blocks and Stateflow
charts.

• Reduce the size of code and improve code execution speed for the Bus
Assignment, Bus Creator and Bus Selector blocks.

Function Prototype Control Enhancements
In R2008a, function prototype control:

• Adds a preview function prototype command, getPreview, when
configuring the prototype programmatically.

• Adds the capability to work with model references.

• Ignores the Pass scalar root inputs by value model reference
configuration parameter when a model_step function prototype is specified.

For more information, see “Controlling model_step Function Prototypes” in
the Real-Time Workshop Embedded Coder documentation.

Improved MISRA-C Compliance for Matrix Math
Utilities and Lookup Block Utilities
This release improves the MISRA-C compliance of matrix math utilities and
lookup block utilities that are used in generated code.

math.h Header File Inclusion Now Controllable
Through Target Function Library Customization
In previous releases, code generated by the Real-Time Workshop Embedded
Coder software automatically included the math.h header file, defining C
standard math functions, regardless of the math requirements of the target
environment. In this release, selecting or customizing a target function
library (TFL) for your model controls which header files are included, and
generated code does not automatically include math.h unless it is needed.

7



Real-Time Workshop® Embedded Coder™ Release Notes

For more information about selecting TFLs, see “Selecting and Viewing Target
Function Libraries” in the Real-Time Workshop® documentation. For more
information about customizing TFLs, see “Target Function Libraries” in the
Real-Time Workshop Embedded Coder documentation.

“What’s This?” Context-Sensitive Help Available for
Simulink® Configuration Parameters Dialog
R2008a introduces “What’s This?” context-sensitive help for parameters
that appear in the Simulink Configuration Parameters dialog. This feature
provides quick access to a detailed description of the parameters, saving you
the time it would take to find the information in the Help browser.

To use the "What’s This?" help, do the following:

1 Place your cursor over the label of a parameter.

2 Right-click. A What’s This? context menu appears.

For example, the following figure shows the What’s This? context menu
appearing after a right-click on the Start time parameter in the Solver
pane.

3 Click What’s This? A context-sensitive help window appears showing a
description of the parameter.

New and Enhanced Demos
The following demos have been added:

Demo... Shows How You Can...

rtwdemo_autosar_legacy_script Prepare, implement, and verify an existing model for
AUTOSAR by using the AUTOSAR target.

8



Version 5.1 (R2008a) Real-Time Workshop® Embedded Coder™ Software

Demo... Shows How You Can...

rtwdemo_autosar_roundtrip_script Import, modify, and export AUTOSAR software
components.

rtwdemo_polyspace Use PolySpace™ products to prove both the absence
and presence of run-time errors for code generated by
Real-Time Workshop® Embedded Coder software. It
also shows the results of MISRA-C compliance for the
generated code.

The following demo has been enhanced to illustrate code traceability
improvements in R2008a:

• rtwdemo_hyperlinks

9



Real-Time Workshop® Embedded Coder™ Release Notes

Version 5.0 (R2007b) Real-Time Workshop® Embedded
Coder™ Software

This table summarizes what’s new in Version 5.0 (R2007b):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

No Bug Reports
Includes fixes

No

New features and changes introduced in this version are

• “New Target Function Library (TFL) API for Mapping Math Functions and
Operators to Target-Specific Code” on page 11

• “Bidirectional Traceability Now Supported Through Automated
Block-to-Code and Code-to-Block Highlighting” on page 12

• “HTML Code Generation Report Adds Traceability Report” on page 14

• “Elimination of Wrapper Generated by R2007a model_step Function
Prototype Control Feature” on page 16

• “Optimized External I/O Data Structures with Function Prototype Control”
on page 16

• “MISRA-C Compliance Enhanced for Enabled Subsystem Code” on page 16

• “User-Defined Data Classes Can Reference Custom Storage Classes from
Other Packages” on page 16

• “Data Type Assistant Support for MPT Objects” on page 19

• “New Target Configuration Parameter for Enabling Real-Time Workshop
Compiler Optimization Level Control” on page 20

• “New Interactive Guided Introduction Demo” on page 20

• “New and Enhanced Demos” on page 21

10

http://www.mathworks.com/support/bugreports/?product=EC&release;=R2007b
http://www.mathworks.com/support/bugreports/?product=EC&release;=R2007b


Version 5.0 (R2007b) Real-Time Workshop® Embedded Coder™ Software

New Target Function Library (TFL) API for Mapping
Math Functions and Operators to Target-Specific
Code
In previous releases, the Target floating-point math environment
parameter on the Interface pane of the Configuration Parameters dialog box
allowed you to select a math library (ANSI, ISO, or GNU) to which function
calls would be generated for appropriate/supported functions within the
generated code for your model. However, no general mechanism was provided
for creating and registering generic target-specific function libraries.

This release provides the target function library (TFL) API, which allows you
to create and register function replacement tables. When selected for a model,
these TFL tables provide the basis for replacing default math functions and
operators in your model code with target-specific code. The ability to control
function and operator replacements in this manner potentially allows you to
optimize target performance (speed and memory) and better integrate model
code with external and legacy code.

The general steps for creating and using a target function library are as
follows:

1 Create one or more TFL tables containing replacement entries for math
operators (+, –, *, /) and functions using a MATLAB-based API. (The
demo rtwdemo_tfl_script provides example tables that can be used as a
starting point for customization.)

2 Register a target function library, consisting of one or more replacement
tables, using a Simulink sl_customization API.

11



Real-Time Workshop® Embedded Coder™ Release Notes

3 Open your model and select the desired target function library from the
Target function library drop-down list, located on the Interface pane in
the Configuration Parameters dialog box.

4 Build your model.

For more information, see “Target Function Libraries” in the Real-Time
Workshop® Embedded Coder™ documentation.

Additionally, see the new demo rtwdemo_tfl_script, which illustrates how
to use TFLs to replace operators and functions in generated code. With each
example model included in this demo, a separate TFL is provided to illustrate
the creation of operator and function replacements and how to register the
replacements with Simulink.

Bidirectional Traceability Now Supported Through
Automated Block-to-Code and Code-to-Block
Highlighting
In previous releases, Real-Time Workshop Embedded Coder software provided
traceability from generated code back to model source blocks through the

12



Version 5.0 (R2007b) Real-Time Workshop® Embedded Coder™ Software

Include hyperlinks to model option on the Real-Time Workshop pane of
the Configuration Parameters dialog box.

This release provides bidirectional traceability between model source blocks
and generated code by

• Renaming the existing option from Include hyperlinks to model to
Code-to-block highlighting

• Adding the Block-to-code highlighting option, which allows you to select
a block and highlight its generated code.

To use Block-to-code highlighting,

1 Open an ERT-based model and go to the Real-Time Workshop pane of
the Configuration Parameters dialog box. Select the options Generate
HTML report, Launch report automatically, and Block-to-code
highlighting. (Selecting Block-to-code highlighting also enables the
Configure button, which you can click to select a build directory to be
traced.)

2 Build your model. This will launch an HTML code generation report.

3 In the model window, right-click any block. In the right-click menu, select
Real-Time Workshop > Highlight Code.

13



Real-Time Workshop® Embedded Coder™ Release Notes

4 This selection highlights the generated code for the block in the HTML code
generation report. The total number of highlighted lines is displayed next
to each source file name in the left panel of the HTML report. Previous
and Next buttons help you navigate through the highlighted lines.

For more information, see “Creating and Using a Code Generation Report” in
the Real-Time Workshop Embedded Coder documentation.

Additionally, see the enhanced demo rtwdemo_hyperlinks, which walks you
through using Code-to-block highlighting, Block-to-code highlighting,
and the traceability report discussed in the next section.

HTML Code Generation Report Adds Traceability
Report
In previous releases, HTML code generation reports did not provide
information to help explain why some model blocks do not generate
corresponding code. In this release, when you select the Block-to-code

14



Version 5.0 (R2007b) Real-Time Workshop® Embedded Coder™ Software

highlighting parameter discussed in the previous section, the generated
HTML report contains a traceability report. The traceability report contains
sections that allow you to account for Eliminated / Virtual Blocks versus
Traceable Blocks, providing a complete mapping between blocks and code.

For more information, see “Creating and Using a Code Generation Report” in
the Real-Time Workshop Embedded Coder documentation.

Additionally, see the enhanced demo rtwdemo_hyperlinks, which walks you
through using the new traceability report.

15



Real-Time Workshop® Embedded Coder™ Release Notes

Elimination of Wrapper Generated by R2007a
model_step Function Prototype Control Feature
In R2007a, function prototype control generated a wrapper function to
implement the model_step function. In R2007b, function prototype control
modifies the model_step function directly, reducing execution time.

Optimized External I/O Data Structures with Function
Prototype Control
In R2007b, function prototype control optimizes external I/O data structures
in the following ways:

• The data structure of a model’s external input is removed unless the value
of the external input is used in a subsystem implemented by a nonreusable
function.

• The data structure for the model’s external output is removed except when
MAT-file logging is enabled, or if the sample time of the outport is constant.

For more information, see “Controlling model_step Function Prototypes” in
the Real-Time Workshop Embedded Coder documentation.

MISRA-C Compliance Enhanced for Enabled
Subsystem Code
R2007b improves MISRA-C compliance of generated code by:

• Implementing enabled subsystem logic more efficiently using if-then-else
statements

• Improving compliance of library code used in generated code

User-Defined Data Classes Can Reference Custom
Storage Classes from Other Packages
In previous releases, the custom storage classes and memory section
definitions contained in a package were unique to that package, and could
not be used directly by other packages. The only recourse was to create
a duplicate definition in every package that needed it. If a global change

16



Version 5.0 (R2007b) Real-Time Workshop® Embedded Coder™ Software

was needed in the definition of the class or section, each local copy had to
be updated separately.

Any package can access and use custom storage classes and memory sections
that are defined in any other package, including both user-defined packages
and predefined packages such as Simulink and mpt. Only one copy of the
class or section exists, in the package that first defined it; other packages refer
to it by pointing to it in its original location. Thus any changes to the class or
section, including changes to a predefined class/section in later MathWorks
product releases, are available in every referencing package.

To configure a package to use a custom storage class or memory section that is
defined in another package:

1 Type cscdesigner to launch the Custom Storage Class Designer. The
relevant part of the designer window looks like this:

17



Real-Time Workshop® Embedded Coder™ Release Notes

2 Select the Custom Storage Class or Memory Section tab as appropriate.
Th following example assumes Custom Storage Class. Memory section
references work the same way.

3 Use Select Package to select the package in which you want to reference a
class (or section) defined in some other package.

4 In the Custom storage class definitions pane, select the existing
definition below which you want to insert the reference.

5 Click New Reference.

A new reference with a default name and properties appears below the
previously selected definition. The new reference is selected, and a
Reference tab appears that shows the reference’s initial properties. This
tab appears whenever a reference is selected, allowing reference properties
to be viewed and changed. A typical appearance is:

6 Use the Name field to enter a name for the new reference. The name
must be unique in the importing package, but can duplicate the name in
the source package.

18



Version 5.0 (R2007b) Real-Time Workshop® Embedded Coder™ Software

7 Set Refer to custom storage class in package to specify the package
that contains the custom storage class you want to reference.

8 Set Custom storage class to reference to specify the custom storage
class to be referenced. Trying to create a circular reference generates an
error and leaves the package unchanged.

9 Click OK or Apply.

If you had worked under the Memory Section tab rather than the Custom
Storage Class tab, the sequence would have been essentially the same, with
appropriate differences in the dialog box labels and the set of items available
to be chosen.

You can use Custom Storage Class Designer capabilities to copy, reorder,
validate, and otherwise manage classes and sections that have been added to
a class by reference. However, you cannot change the underlying definitions.
You can change a custom storage class or memory section only in the package
where it was originally defined.

For more information, see “ Using Custom Storage Class References” and
“Using Memory Section References”.

Data Type Assistant Support for MPT Objects
Simulink now provides a standardized user interface, the Data Type
Assistant, for specifying data types associated with Simulink blocks and data
objects, as well as Stateflow data. See “Using the Data Type Assistant” for
details.

The Data Type Assistant appears on the dialogs of a variety of blocks and
data objects, including MPT data objects, which are specific to the Real-Time
Workshop Embedded Coder software:

• mpt.Parameter

• mpt.Signal

Information about MPT objects appears in Real-Time Workshop Embedded
Coder Module Packaging Features.

19



Real-Time Workshop® Embedded Coder™ Release Notes

New Target Configuration Parameter for Enabling
Real-Time Workshop Compiler Optimization Level
Control
V5.0 (R2007b) Real-Time Workshop Embedded Coder introduces a new target
configuration parameter, CompOptLevelCompliant. This parameter indicates
whether a target supports the new Real-Time Workshop configuration
parameter Compiler Optimization Level. (Compiler Optimization
Level controls the compiler optimization level for building generated code;
for more information, see “Controlling Compiler Optimization Level and
Specifying Custom Optimization Settings” in the Real-Time Workshop
documentation.)

When the CompOptLevelCompliant target configuration parameter is set
to on, the Compiler Optimization Level parameter is displayed in the
Real-Time Workshop pane of the Configuration Parameters dialog box for
your model. If the CompOptLevelCompliant parameter is not set to on, the
Compiler Optimization Level parameter does not appear.

By default, the CompOptLevelCompliant parameter is set to off for custom
targets and on for targets provided by Real-Time Workshop and Real-Time
Workshop Embedded Coder.

To make a target compliant, use the SelectCallback function to set
CompOptLevelCompliant to on, and then modify the target makefile to honor
the setting for Compiler Optimization Level, in the manner of the targets
provided by Real-Time Workshop and Real-Time Workshop Embedded Coder.

New Interactive Guided Introduction Demo
An interactive demo of Real-Time Workshop Embedded Coder is available.
This demo shows you how to apply MathWorks products to the basic steps
that are common to most projects that design and implement a control
algorithm. To view the demo:

1 Launch MATLAB Online Help.

2 Configure File > Preferences > Help > Enable product filter so
that Help information appears for Simulink, Real-Time Workshop, and
Real-Time Workshop Embedded Coder.

20



Version 5.0 (R2007b) Real-Time Workshop® Embedded Coder™ Software

3 Select the Demos tab.

4 Navigate to and expand Simulink > Real-Time Workshop > Guided
Introductions > Real-Time Workshop Embedded Coder.

Help displays the names of the modules that comprise the Real-Time
Workshop Embedded Coder Guided Introduction. To begin viewing the demo,
click the name of the first module, Introduction, then proceed through
subsequent modules in order, or jump directly to any that are of particular
interest.

New and Enhanced Demos
The following demos have been added:

Demo... Shows How You Can...

rtwdemo_pcgd_intro Apply MathWorks products to the basic
steps that are common to most projects that
design and implement a control algorithm.
For more information, see “New Interactive
Guided Introduction Demo” on page 20.

rtwdemo_tfl_script Use Target Function Libraries (TFLs) to
replace operators and functions in generated
code. With each example model included
in this demo, a separate Target Function
Library is provided to illustrate the creation
of operator and function replacements using
a MATLAB based API, and how to register
the replacements with Simulink.

The following demo has been enhanced to illustrate code traceability
improvements in R2007b, including block-to-code highlighting and traceability
report enhancements:

• rtwdemo_hyperlinks

21



Real-Time Workshop® Embedded Coder™ Release Notes

Version 4.6.1 (R2007a+) Real-Time Workshop® Embedded
Coder™ Software

This table summarizes what’s new in Version 4.6.1 (R2007a+):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

No No Bug Reports
Includes fixes

No

22

http://www.mathworks.com/support/bugreports/?product=EC&release;=R2007a%2B
http://www.mathworks.com/support/bugreports/?product=EC&release;=R2007a%2B


Version 4.6 (R2007a) Real-Time Workshop® Embedded Coder™ Software

Version 4.6 (R2007a) Real-Time Workshop® Embedded
Coder™ Software

This table summarizes what’s new in Version 4.6 (R2007a):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

No Bug Reports
Includes fixes

No

New features and changes introduced in this version are

• “Controlling Step Function Prototypes for Models” on page 23

• “New ModelStepFunctionPrototypeControlCompliant Target Configuration
Parameter” on page 26

• “New ERT Target for Generating Host-Based Shared Libraries” on page 27

• “Enhanced Software-in-the-loop (SIL) Testing with New Portable Word
Sizes Option” on page 29

• “New Code Style Options for Controlling Expression Optimizations in
Generated Code” on page 30

• “Enhanced MISRA-C Compliance” on page 31

• “New and Enhanced Demos” on page 31

Controlling Step Function Prototypes for Models
In previous releases, there were only limited ways to control the function
prototype of an ERT-based model’s generated model_step function. The
default model_step function prototype resembles the following:

void model_step(void);

If you generate reusable, reentrant code for an ERT-based model, the model’s
root-level inputs and outputs, block states, parameters, and external outputs
are passed in to model_step using a function prototype that resembles the
following:

23

http://www.mathworks.com/support/bugreports/?product=EC&release;=R2007a
http://www.mathworks.com/support/bugreports/?product=EC&release;=R2007a


Real-Time Workshop® Embedded Coder™ Release Notes

void model_step(inport_args, outport_args, BlockIO_arg, DWork_arg, RT_model_arg);

This release adds more flexible user control over the model_step function
prototype that is generated for ERT-based Simulink models. From the
Interface pane of the Configuration Parameters dialog box, you can click a
new Configure Functions button that launches a Model Step Functions
dialog box. Based on the Function specification value you select for
your model_step function (supported values include Default model-step
function and Model specific C prototype), you can preview and modify
the function prototype. Here is a sample dialog box:

Once you validate and apply your changes, you can generate code based on
your function prototype modifications.

24



Version 4.6 (R2007a) Real-Time Workshop® Embedded Coder™ Software

Alternatively, you can use the following function prototype control functions
to programmatically control model_step function prototypes:

Function Description

addArgConf Add argument configuration information for Simulink model
port to model-specific C function prototype

attachToModel (Function
Prototype Control)

Attach model-specific C function prototype to loaded
ERT-based Simulink model

getArgCategory Get argument category for Simulink model port from
model-specific C function prototype

getArgName Get argument name for Simulink model port from
model-specific C function prototype

getArgPosition Get argument position for Simulink model port from
model-specific C function prototype

getArgQualifier Get argument type qualifier for Simulink model port from
model-specific C function prototype

getDefaultConf (Function
Prototype Control)

Get default configuration information for model-specific
C function prototype from Simulink model to which it is
attached

getFunctionName Get function name from model-specific C function prototype

getNumArgs Get number of function arguments from model-specific C
function prototype

runValidation (Function
Prototype Control)

Validate model-specific C function prototype against
Simulink model to which it is attached

setArgCategory Set argument category for Simulink model port in
model-specific C function prototype

setArgName Set argument name for Simulink model port in model-specific
C function prototype

setArgPosition Set argument position for Simulink model port in
model-specific C function prototype

setArgQualifier Set argument type qualifier for Simulink model port in
model-specific C function prototype

setFunctionName Set function name in model-specific C function prototype

25



Real-Time Workshop® Embedded Coder™ Release Notes

You can also control step function prototypes for nonvirtual subsystems,
if you generate subsystem code using right-click build. To launch
the Model Step Functions for subsystem dialog box, use the function
RTW.configSubsystemBuild:

RTW.configSubsystemBuild('model/subsystem')
RTW.configSubsystemBuild(gcb)

Right-click building the subsystem will generate the step function according
to the customizations you make.

For more information about controlling model_step function prototypes, see
the sections “Configuring Model Interfaces” and “Controlling model_step
Function Prototypes” in the Real-Time Workshop Embedded Coder
documentation. For limitations that apply, see “model_step Function
Prototype Control Limitations” in the Real-Time Workshop Embedded Coder
documentation.

For more detailed information about the default calling interface for the
model_step function, see the model_step reference page.

New ModelStepFunctionPrototypeControlCompliant
Target Configuration Parameter
In conjunction with the function prototype control feature
described in the previous section, this release introduces the
ModelStepFunctionPrototypeControlCompliant target configuration
parameter. This parameter is set in the SelectCallback function for a target
to indicate whether the target supports the ability to control the function
prototypes of step functions that are generated for a Simulink model. The
default is off for custom and non-ERT targets and on for ERT (ert.tlc)
targets.

When this parameter is set to off and you attempt to use function prototype
control to modify a step function signature, Real-Time Workshop Embedded
Coder ignores the modified function prototype control configuration.

To make a target compliant,

26



Version 4.6 (R2007a) Real-Time Workshop® Embedded Coder™ Software

1 Use the SelectCallback function to set
ModelStepFunctionPrototypeControlCompliant to on. This enables
the feature infrastructure and user interface.

2 If your target uses a custom static main module, and if a nondefault
function prototype control configuration is associated with a model, update
the main module to call the function prototype controlled model step
function. You can do this in either of the following ways:

a Manually adapt your main module to declare appropriate model data
and call the function prototype controlled model step function.

b Generate your main module using Generate an example main
program on the Templates pane of the Configuration Parameters
dialog box. This mechanism has been updated to declare model data and
call the function prototype controlled model step function appropriately.

New ERT Target for Generating Host-Based Shared
Libraries
This release adds a new ERT target, ert_shrlib.tlc, for generating a
host-based shared library from your Simulink model. Selecting this target
allows you to generate a shared library version of your model code that is
appropriate for your host platform, either a Windows dynamic link library
(.dll) file or a UNIX shared object (.so) file. This feature can be used to
package your source code securely for easy distribution and shared use. The
generated .dll or .so file is shareable among different applications and
upgradeable without having to recompile the applications that use it.

To configure your model code for shared use by applications, you select
the ert_shrlib.tlc target on the Real-Time Workshop pane of the
Configuration Parameters dialog box.

27



Real-Time Workshop® Embedded Coder™ Release Notes

The shared library generated from your model can be dynamically loaded from
another application. For example, if you open the demo rtwdemo_counter,
select the ert_shrlib.tlc target, and generate code, application code similar
to the following could be used to dynamically load the generated library file:

#if (defined(_WIN32)||defined(_WIN64)) /* WINDOWS */
#include <windows.h>
#define GETSYMBOLADDR GetProcAddress
#define LOADLIB LoadLibrary
#define CLOSELIB FreeLibrary

#else /* UNIX */
#include <dlfcn.h>
#define GETSYMBOLADDR dlsym
#define LOADLIB dlopen
#define CLOSELIB dlclose

#endif

int main()
{

void* handleLib;
...
#if defined(_WIN64)

handleLib = LOADLIB("./rtwdemo_counter_win64.dll");
#else
#if defined(_WIN32)

handleLib = LOADLIB("./rtwdemo_counter_win32.dll");

28



Version 4.6 (R2007a) Real-Time Workshop® Embedded Coder™ Software

#else /* UNIX */
handleLib = LOADLIB("./rtwdemo_counter.so", RTLD_LAZY);

#endif
#endif
...

return(CLOSELIB(handleLib));
}

For more information about using the ert_shrlib.tlc target, see “Creating
and Using Host-Based Shared Libraries” in the Real-Time Workshop
Embedded Coder documentation. For limitations that apply, see “Host-Based
Shared Library Limitations” in the Real-Time Workshop Embedded Coder
documentation.

Enhanced Software-in-the-loop (SIL) Testing with
New Portable Word Sizes Option
This release adds a new model configuration option, Enable portable
word sizes, that supports code generation for host-target configurations in
which the processor word sizes differ between host and target platforms (for
example, a 32-bit host and a 16-bit target). Selecting the Enable portable
word sizes option allows you to generate code with conditional processing
macros that allow the same generated source code files to be used both for
software-in-the-loop (SIL) testing on the host platform and for production
deployment on the target platform.

To use this feature, select both Create Simulink (S-Function) block and
Enable portable word sizes on the Interface pane of the Configuration
Parameters dialog box. Also, make sure that Emulation hardware is set to
None on the Hardware Implementation pane.

When you generate code from your model, data type definitions are
conditionalized such that tmwtypes.h is included to support SIL testing
on the host platform and Real-Time Workshop types are used to support

29



Real-Time Workshop® Embedded Coder™ Release Notes

deployment on the target platform. For example, in the generated code below,
the first two lines define types for host-based SIL testing and the bold lines
define types for target deployment:

#ifdef PORTABLE_WORDSIZES /* PORTABLE_WORDSIZES defined */
# include "tmwtypes.h"
#else /* PORTABLE_WORDSIZES not defined */
#define __TMWTYPES__
#include <limits.h>
...
typedef signed char int8_T;
typedef unsigned char uint8_T;
typedef int int16_T;
typedef unsigned int uint16_T;
typedef long int32_T;
typedef unsigned long uint32_T;
typedef float real32_T;
typedef double real64_T;
...
#endif /* PORTABLE_WORDSIZES */

To build the generated code for SIL testing on the host platform, the definition
PORTABLE_WORDSIZES should be passed to the compiler, for example by using
the compiler option -DPORTABLE_WORDSIZES. To build the same code for target
deployment, the code should be compiled without the PORTABLE_WORDSIZES
definition.

For more information about using portable word sizes for host-based SIL
testing, see “Configuring Model Interfaces” and “Validating ERT Production
Code on the MATLAB® Host Computer Using Portable Word Sizes” in the
Real-Time Workshop Embedded Coder documentation. For limitations that
apply, see “Portable Word Sizes Limitations” in the Real-Time Workshop
Embedded Coder documentation.

New Code Style Options for Controlling Expression
Optimizations in Generated Code
Two new options on the Code Style pane of the Configuration Parameters
dialog box allow you to control specific optimizations in generated code:

30



Version 4.6 (R2007a) Real-Time Workshop® Embedded Coder™ Software

Option Description

Preserve operand order in
expression

By default, Real-Time Workshop
might reorder commutable operands
to make an expression left-recursive.
Selecting this option preserves the
expression order you specify in the
model.

Preserve condition expression
in if statement

By default, Real-Time Workshop
negates the condition expression
in an if statement if the first
statement branch is empty. Selecting
this option preserves the condition
expression you specify in the model.

For more information, see Code Style Pane in the Real-Time Workshop
Embedded Coder documentation.

Enhanced MISRA-C Compliance
This release provides several enhancements to MISRA-C compliance,
including

• Numerous improvements to source files in the matlabroot/rtw/c/libsrc
directory

• Elimination of goto statements in Stateflow generated code (for more
information, see the Stateflow and Stateflow Coder Release Notes)

• Simplified generated code for reusable enabled subsystems (for more
information, see the Real-Time Workshop Release Notes)

New and Enhanced Demos
The following demos have been added:

31



Real-Time Workshop® Embedded Coder™ Release Notes

Demo... Shows How You Can...

rtwdemo_fcnprotoctrl Control the generated function prototype for
the model entry point function model_step

rtwdemo_shrlib Use the ERT shared library target to
generate a host-based shared library (.dll
or .so) from a model and then load the
shared library from another application

The following demo has been enhanced:

• rtwdemo_sil

32



Version 4.5 (R2006b) Real-Time Workshop® Embedded Coder™ Software

Version 4.5 (R2006b) Real-Time Workshop® Embedded
Coder™ Software

This table summarizes what’s new in Version 4.5 (R2006b):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations,
below. See also
Summary.

Bug Reports
Includes fixes

No

New features and changes introduced in this version are

• “Efficiency Enhancements in Generated Code” on page 34

• “Fixed-Point Code Generation Support for Enhanced N-Dimensional
Lookup Table Blocks” on page 34

• “Ability to Control Use of Parentheses in Generated Code” on page 34

• “Enhanced HTML Code Report Performance and Content” on page 35

• “New General-Purpose OSEK/VDX Real-Time Operating System (RTOS)
Example” on page 35

• “New ’error’ Hook Method for STF_make_rtw_hook.m” on page 36

• “Maximum Length Enforced for Auto-Generated Identifiers in Generated
Code” on page 36

• “New Default Value for IncludeERTFirstTime Model Configuration
Parameter” on page 38

• “Use of firstTime Argument to model_initialize Function to Be
Discontinued” on page 39

• “"Source of initial values" Option for MPT Data Objects Removed” on
page 39

• “New and Enhanced Demos” on page 40

33

http://www.mathworks.com/support/bugreports/?product=EC&release;=R2006b
http://www.mathworks.com/support/bugreports/?product=EC&release;=R2006b


Real-Time Workshop® Embedded Coder™ Release Notes

• “New Reference Documentation” on page 40

Efficiency Enhancements in Generated Code
Real-Time Workshop Embedded Coder V4.5 (R2006b) provides the following
efficiency enhancements in code generated from Simulink models:

• Element-by-element optimized code for vector operations

• Improved efficiency and readability of for loops generated for wide signals
that have multiple sources

• Unnecessary temporary variables no longer generated for muxed signals

Fixed-Point Code Generation Support for Enhanced
N-Dimensional Lookup Table Blocks
Real-Time Workshop Embedded Coder V4.5 (R2006b) supports fixed-point
code generation for the following new Simulink N-dimensional lookup table
blocks:

• Prelookup

• Interpolation Using Prelookup

The new blocks provide fixed-point arithmetic and more efficient code
generation than the blocks they replace, PreLookup Index Search and
Interpolation (n-D) Using PreLookup.

Ability to Control Use of Parentheses in Generated
Code
The new Code Style pane in the Configuration Parameters dialog box allows
you to control optional parentheses in generated code, including generating
code that meets MISRA requirements. The default behavior is to generate
code similar to that of previous releases.

For more information, see Code Style Pane in the Real-Time Workshop
Embedded Coder documentation.

34



Version 4.5 (R2006b) Real-Time Workshop® Embedded Coder™ Software

Enhanced HTML Code Report Performance and
Content
If you select the Generate HTML report check box on the Real-Time
Workshop pane of the Configuration Parameters dialog box, Real-Time
Workshop Embedded Coder automatically produces a code generation report
in HTML format. In R2006b, the performance associated with producing the
code generation report has improved significantly. In addition, the reports
no longer display the names of hidden blocks, such as automatically inserted
Rate Transition blocks, as hyperlinks.

New General-Purpose OSEK/VDX Real-Time
Operating System (RTOS) Example
Real-Time Workshop Embedded Coder V4.5 (R2006b) adds a new demo,
rtwdemo_osek, that illustrates techniques for interfacing to the OSEK/VDX®

real-time operating system (RTOS). The demo model includes:

• Example Simulink block implementations of OSEK functions SetAlarm
and ActivateTask

• Function-call subsystems that are generated as separate OSEK tasks,
which can execute based on assigned priority using the OSEK scheduler

Additional files related to the demo are provided in
matlabroot/toolbox/rtw/rtwdemos/osektgt_demo. These include:

• Real-Time Workshop Embedded Coder file customization template
osek_file_process.tlc, which generates a generic OSEK main program
and an OSEK Implementation Language (OIL) file

• OSEK library file oseklib.tlc, which contains functions called by
osek_file_process.tlc

• C and C-mex files for the S-functions oseksetalarm and osektask

After launching rtwdemo_osek, you can save the model file rtwdemo_osek.mdl
to a work directory. You can use the model file and the related files in
matlabroot/toolbox/rtw/rtwdemos/osektgt_demo as a starting point to
target specific OSEK implementations. The demo model provides examples
of implementing Simulink blocks for OSEK APIs, and you can modify

35



Real-Time Workshop® Embedded Coder™ Release Notes

oseklib.tlc and osek_file_process.tlc to provide detailed information
about your OSEK implementation.

Note

• The rtwdemo_osek demo runs only on 32-bit Windows. (You can run the
demo if the MATLAB computer command returns the value PCWIN on your
system.)

• The rtwdemo_osek demo incorporates a subset of the Embedded Target for
OSEK/VDX functionality. With the introduction of R2006b, Embedded
Target for OSEK/VDX will no longer be available for purchase as a separate
product.

New ’error’ Hook Method for STF_make_rtw_hook.m
As of V4.5 (R2006b), the STF_make_rtw_hook.m hook file, which you can use
to customize the target build process, supports a new 'error' hook method.
If used, Real-Time Workshop calls the 'error' hook method when an error
occurs during code generation or the build process. For example, you might
use the new hook method to clean up any static or global data used by the
hook file after an error occurs. Valid arguments include the hook method
and model name.

For more information about the 'error' hook method or the
STF_make_rtw_hook.m hook file, see “Customizing the Target Build Process
with the STF_make_rtw Hook File”.

Maximum Length Enforced for Auto-Generated
Identifiers in Generated Code
In previous releases, some auto-generated identifiers in generated code
were allowed to exceed the Maximum identifier length specified on the
Real-Time Workshop/Symbols pane of the Configuration Parameters
dialog box. Generated identifiers that exceeded the Maximum identifier
length did not honor the user setting and potentially were inconsistent
with ANSI-C or MISRA guidelines requiring identifiers to be unique within
a prescribed length (31 characters).

36



Version 4.5 (R2006b) Real-Time Workshop® Embedded Coder™ Software

In R2006b, the user-specified Maximum identifier length is more rigorously
enforced for auto-generated identifiers in generated code.

For limitations that apply, see “Identifier Format Control Parameters
Limitations” in the Real-Time Workshop Embedded Coder documentation. For
upgrade and compatibility considerations, see “Compatibility Considerations”
on page 37.

For more information about the Real-Time Workshop Embedded Coder
parameters for Identifier format control and their use, see “Customizing
Generated Identifiers” and its subsection “Specifying Identifier Formats” in
the Real-Time Workshop Embedded Coder documentation.

Compatibility Considerations
The following considerations for identifier format control apply when
upgrading a Simulink model from an earlier release to this release:

• Some identifiers that were allowed to exceed the Maximum identifier
length (on the Real-Time Workshop/Symbols pane of the Configuration
Parameters dialog box) in earlier releases are mangled in this release to
conform to the maximum length. The mangling is most likely to occur
in models with long names.

To preserve the identifiers, you can increase the value of the Maximum
identifier length parameter for the model.

• For models that use model referencing, some models that built successfully
in previous versions might get build warnings or errors in R2006b, due to
potential collisions between truncated identifier names that are exported
by sibling models. To avoid name clashes in models that use model
referencing, do one of the following:

- Increase the Maximum identifier length for top and referenced
models until the warnings or errors disappear. In this case, uniqueness
of model names ensures that the exported identifier names do not clash.

- Define a unique identifier naming scheme for each model. For example,
you might define the Identifier format control string m1$R$N$M for
the first model, m2$R$N$M for the second model, and so forth. In this
case, uniqueness of Identifier format control strings ensures that the
exported identifier names do not clash.

37



Real-Time Workshop® Embedded Coder™ Release Notes

• The identifier format control enhancements in this release introduce some
naming differences in the auto-generated identifiers for

- Stateflow and Embedded MATLAB temporary variables

- Subsystem and model reference global identifiers and types

New Default Value for IncludeERTFirstTime Model
Configuration Parameter
In R2006a, Real-Time Workshop Embedded Coder introduced the
IncludeERTFirstTime model configuration parameter, which specifies
whether Real-Time Workshop Embedded Coder is to include the firstTime
argument in the model_initialize function generated for an ERT-based
Simulink model.

In R2006b, the default value of this parameter has changed from on (include
the firstTime argument) to off (do not include the firstTime argument).
As a result, for ERT-based Simulink models newly created in R2006b, the
code generated for the model_initialize function by default will no longer
include the firstTime argument.

To include the firstTime argument in generated code, change the value of
the IncludeERTFirstTime parameter to on. However, see the release note
“Use of firstTime Argument to model_initialize Function to Be Discontinued”
on page 39.

Note In R2006b, it is no longer required that the setting for
IncludeERTFirstTime must be consistent throughout a model reference
hierarchy.

Compatibility Considerations
For ERT-based Simulink models newly created in R2006b, the code generated
for the model_initialize function by default will no longer include the
firstTime argument. As a result, existing custom static main programs
that invoke model_initialize with the firstTime argument will need to be
reconciled with the code generated for the model_initialize function. For
example, you can

38



Version 4.5 (R2006b) Real-Time Workshop® Embedded Coder™ Software

• Modify the invoking main program to remove code related to the firstTime
argument (recommended).

• Change the value of the IncludeERTFirstTime model configuration
parameter to on and regenerate code for the Simulink model.

• Modify the invoking main program to conditionally include or suppress
the firstTime argument for the Simulink model. In the generated
header file autobuild.h, the macro INCLUDE_FIRST_TIME_ARG will
be set to 0 if the IncludeERTFirstTime parameter is set to off or 1 if
the parameter is set to on. Inside the static main program, make sure
to #include autobuild.h and then conditionally compile declarations
and calls to the model_initialize function, based on the value of the
INCLUDE_FIRST_TIME_ARG macro.

Use of firstTime Argument to model_initialize
Function to Be Discontinued
In a future release, Real-Time Workshop Embedded Coder will no longer
use the firstTime argument in a model’s generated model_initialize
function. For more information about this change, use the form at
http://www.mathworks.com/contact_TS.html to contact The MathWorks
Technical Support.

"Source of initial values" Option for MPT Data
Objects Removed
In R2006b, the Source of initial values option for MPT data objects
has been removed from the Data Placement pane of the Configuration
Parameters dialog box. Although this option was visible in R2006a, it was
obsolete and the setting had no effect.

Use Simulink.Signal objects to initialize signal values, as explained in
“Initializing Signals and Discrete States” in the Simulink documentation.

39

http://www.mathworks.com/contact_TS.html


Real-Time Workshop® Embedded Coder™ Release Notes

New and Enhanced Demos
The following demos have been added:

Demo... Shows How You Can...

rtwdemo_importstruct Import externally defined parameters into
Simulink. This model demonstrates how to
generate code that accesses the fields of a
data structure. The data structure is defined
in legacy (hand-written) code and accessed
via a pointer. This technique enables users
to easily switch between complete sets
of parameters at run time (for example,
between reference and working versions).

rtwdemo_osek Interface to the OSEK/VDX real-time
operating system. For more information,
see “New General-Purpose OSEK/VDX
Real-Time Operating System (RTOS)
Example” on page 35.

rtwdemo_parentheses Set the style of parenthesization in
generated code to be Minimum (only
parentheses required by C syntax), Nominal
(parentheses added to optimize readability),
or Maximum (parentheses obviate C
precedence, as required by MISRA).

New Reference Documentation
R2006b adds HTML and PDF reference documentation for Real-Time
Workshop Embedded Coder functions and blocks.

40



Version 4.4.1 (R2006a+) Real-Time Workshop® Embedded Coder™ Software

Version 4.4.1 (R2006a+) Real-Time Workshop® Embedded
Coder™ Software

This table summarizes what’s new in Version 4.4.1 (R2006a+):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

No No Bug Reports
Includes fixes

No

41

http://www.mathworks.com/support/bugreports/?product=EC&release;=R2006a%2B
http://www.mathworks.com/support/bugreports/?product=EC&release;=R2006a%2B


Real-Time Workshop® Embedded Coder™ Release Notes

Version 4.4 (R2006a) Real-Time Workshop® Embedded
Coder™ Software

This table summarizes what’s new in Version 4.4 (R2006a):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations,
below. See also
Summary.

Bug Reports
Includes fixes

No

New features and changes introduced in this version are

• “Nonvirtual Subsystem Option for Generating Modular Function Code”
on page 43

• “Exporting Function-Call Subsystems” on page 44

• “Identifier Format Control Parameters for Code Generation” on page 44

• “New and Changed Memory Section Capabilities” on page 46

• “New sl_customization API for Registering Real-Time Workshop Build
Process Hooks” on page 47

• “New sl_customization API for Customizing Data Objects” on page 49

• “mpt Signal Object Enhancements” on page 50

• “New IncludeERTFirstTime Model Configuration Parameter” on page 52

• “New ERTFirstTimeCompliant Target Configuration Parameter” on page
52

• “firstTime Argument to model_initialize Function” on page 53

• “Data Object Wizard Script for Labeling Root I/O Signals Based on
Inport/Outport Names” on page 53

• “New and Enhanced Demos” on page 54

42

http://www.mathworks.com/support/bugreports/?product=EC&release;=R2006a
http://www.mathworks.com/support/bugreports/?product=EC&release;=R2006a


Version 4.4 (R2006a) Real-Time Workshop® Embedded Coder™ Software

Nonvirtual Subsystem Option for Generating
Modular Function Code
This release provides a new subsystem option, Function with separate
data, that allows you to generate modular function code for nonvirtual
subsystems, including atomic subsystems and conditionally executed
subsystems.

In previous releases, the generated code for a nonvirtual subsystem did not
separate a subsystem’s internal data from the data of its parent Simulink
model. This could make it difficult to trace and test the code, particularly
for nonreusable subsystems. Also, in large models containing nonvirtual
subsystems, data structures could become large and potentially difficult to
compile.

In this release, the Subsystem Parameters dialog box option Function with
separate data allows you to generate subsystem function code in which
the internal data for a nonvirtual subsystem is separated from its parent
model and owned by the subsystem. As a result, the generated code for the
subsystem is easier to trace and test. The data separation also tends to reduce
the size of data structures throughout the model.

Note Selecting the Function with separate data option for a nonvirtual
subsystem has no semantic effect on the parent Simulink model.

To be able to use this option,

• Your Simulink model must use an ERT-based system target file (requires a
license for Real-Time Workshop Embedded Coder).

• Your subsystem must be configured to be atomic or conditionally executed
(for more information, see “Systems and Subsystems” in the Simulink
documentation).

• Your subsystem must use the Function setting for the Real-Time
Workshop system code parameter.

To configure your subsystem for generating modular function code, you invoke
the Subsystem Parameters dialog box and make a series of selections to

43



Real-Time Workshop® Embedded Coder™ Release Notes

display and enable the Function with separate data option. For details, see
“Nonvirtual Subsystem Modular Function Code Generation” in the Real-Time
Workshop Embedded Coder documentation. For limitations that apply, see
“Nonvirtual Subsystem Modular Function Code Limitations” in the Real-Time
Workshop Embedded Coder documentation.

For more information about generating code for atomic subsystems, see the
sections “Nonvirtual Subsystem Code Generation” and “Generating Code and
Executables from Subsystems” in the Real-Time Workshop documentation.

Exporting Function-Call Subsystems
This release adds new code generation capabilities for Simulink function-call
subsystems. You can use these new capabilities to

• Automatically generate code for

- A function-call subsystem that contains only blocks that support code
generation

- A virtual subsystem that contains only such subsystems and a few other
types of blocks

• Optionally generate an ERT S-function wrapper for the generated code

For detailed descriptions of the new exporting capabilities, see “Exporting
Function-Call Subsystems” in the Real-Time Workshop Embedded Coder
documentation. For limitations that apply, see “Function-Call Subsystems
Export Limitations” in the Real-Time Workshop Embedded Coder
documentation.

Identifier Format Control Parameters for Code
Generation
This release adds several Identifier format control parameters that
provide you finer control over the naming rules for identifiers created in
generated code.

In previous releases, the Symbol format parameter on the Real-Time
Workshop/Symbols pane of the Configuration Parameters dialog box
allowed you to specify one macro string that affected naming for a range of

44



Version 4.4 (R2006a) Real-Time Workshop® Embedded Coder™ Software

symbol types. In this release, several Identifier format control parameters
allow you to exercise format control individually for

• Global variable names

• Global type names

• Field names of global types

• Subsystem method names

• Local temporary variable names

• Local block output variable names

• Constant macro names

To be able to use the new Identifier format control parameters, your
Simulink model must use an ERT-based system target file (requires a license
for Real-Time Workshop Embedded Coder).

For a description of the new Identifier format control parameters and
their use, see “Customizing Generated Identifiers” and its subsection
“Specifying Identifier Formats” in the Real-Time Workshop Embedded
Coder documentation. For limitations that apply, see “Identifier Format
Control Parameters Limitations” in the Real-Time Workshop Embedded
Coder documentation. For upgrade and compatibility considerations, see
“Compatibility Considerations” on page 45.

Compatibility Considerations
The following considerations for identifier format control apply when
upgrading a Simulink model from an earlier release to this release:

• Some identifiers that were allowed to exceed the Maximum identifier
length (on the Real-Time Workshop/Symbols pane of the Configuration
Parameters dialog box) in earlier releases are mangled in this release to
conform to the maximum length. The types of identifiers that potentially
are affected are Simulink global variables, Simulink global types, local
variables, subsystem methods, and Simulink constant macros. The
mangling is most likely to occur in models with long names.

To preserve the identifiers, you can increase the Maximum identifier
length.

45



Real-Time Workshop® Embedded Coder™ Release Notes

• By default, Simulink constant macro names are generated in a different
format in this release than in earlier releases.

To restore the earlier identifier format for Simulink constant macro names,
you can specify the macro string rtcP$N$M for the Constant macros
parameter on the Real-Time Workshop/Symbols pane. However, this
setting causes Stateflow constant macros to be generated differently than
in earlier releases.

• In earlier releases, symbols exported by referenced models were prefixed
with the full model name to avoid name collisions between sibling models
with similar long names. In this release, the Maximum identifier length
is enforced for these exported identifiers, increasing the likelihood of a
collision between truncated model names that did not occur in earlier
releases.

In this release, the software provides a warning when the current
Maximum identifier length cannot accommodate the full model name in
the exported identifiers. This warning indicates a potential name collision
between sibling models.

To avoid name clashes in models that use model referencing, do one of
the following:

- Increase the Maximum identifier length for top and referenced
models until the warning disappears. In this case, uniqueness of model
names ensures that the exported identifier names do not clash.

- Define a unique identifier naming scheme for each model. For example,
you might define the Identifier format control string m1$R$N$M for
the first model, m2$R$N$M for the second model, and so forth. In this
case, uniqueness of Identifier format control strings ensures that the
exported identifier names do not clash.

New and Changed Memory Section Capabilities
This release provides new and changed memory section capabilities in
Real-Time Workshop Embedded Coder. In previous releases, memory sections
could be applied only to data objects defined in custom storage classes, and
memory section pragmas could surround only a contiguous block of all data
objects in that section. This release adds enhancements that

46



Version 4.4 (R2006a) Real-Time Workshop® Embedded Coder™ Software

• Provide an improved user interface for defining memory sections, including
a new Memory Sections pane in the Configuration Parameters dialog box.

• Support memory sections for

- Model-level functions

- Model-level internal data

- Subsystem functions

- Subsystem internal data

• Allow pragmas to be applied separately to each function or data definition.
The text of each pragma can contain the name of the definition to which it
applies.

For detailed descriptions of the new memory section capabilities, see
“Configuring Memory Sections” and the “Memory Sections” chapter in the
Real-Time Workshop Embedded Coder documentation.

New sl_customization API for Registering Real-Time
Workshop Build Process Hooks
This release introduces an API, exercised through the Simulink customization
file sl_customization.m, that allows you to register installation-specific
hook functions to be invoked during the Real-Time Workshop build process.

The hook functions that you register through sl_customization.m
complement System Target File (STF) hooks (described in “Customizing the
Target Build Process with the STF_make_rtw Hook File”) and post-code
generation commands (described in “Customizing Post Code Generation Build
Processing”).

The following figure shows the relationship between installation-level hooks
and the other available mechanisms for customizing the build process.

47



Real-Time Workshop® Embedded Coder™ Release Notes

��������	
��

�������	�
��
�����
��
���������

���
�

����
�
���

����

���

����

����

����
�
����

����

�
����	
��

������
���������

�
���������
���
���������

���������������������

�
���������
������������������

��������������������

�
���������
�����������������

����������������������

�
���������
�������������������

�
���������
������������������

���������������������

���������������

�
���������
������������

 ��������
!�
������

�����
�

For details on the use of sl_customization.m to register build hook functions,
see “Customizing the Target Build Process with sl_customization.m” in the
Real-Time Workshop Embedded Coder documentation. For more information

48



Version 4.4 (R2006a) Real-Time Workshop® Embedded Coder™ Software

on the Simulink customization file sl_customization.m, see “Customizing
the Simulink® User Interface” in the Simulink documentation.

New sl_customization API for Customizing Data
Objects
This release introduces an API, exercised through the Simulink customization
file sl_customization.m, that allows you to register Simulink data object
customizations, including

• User data types

• mpt user object types

• Data Object Wizard (DOW) user packages

This new registration mechanism replaces earlier mechanisms involving
the files custom_user_type_registration.m (for creating user data
types) and custom_user_object_type_info.m (for registering mpt
user object types). A script is provided to convert existing instances of
custom_user_type_registration.m and custom_user_object_type_info.m
to sl_customization.m (see “Compatibility Considerations” on page 49).

For details on the use of sl_customization.m to customize Simulink data
objects, see the following sections in the Real-Time Workshop Embedded
Coder Module Packaging Features document:

• “Creating User Data Types”

• “Registering mpt User Object Types”

• “Customizing Data Object Wizard User Packages”

For more information on the Simulink customization file sl_customization.m,
see “Customizing the Simulink User Interface” in the Simulink documentation.

Compatibility Considerations
In R2006a, data object customization mechanisms involving the files
custom_user_type_registration.m and custom_user_object_type_info.m
have been replaced by APIs exercised through the Simulink customization

49



Real-Time Workshop® Embedded Coder™ Release Notes

file sl_customization.m. The older files and the mechanisms associated
with them no longer have any effect.

If you have instances of custom_user_type_registration.m
and custom_user_object_type_info.m that contain data object
customizations that you want to preserve, you must convert the
customizations to the new mechanism. You can use the MATLAB
command convert_custom_registration to generate a corresponding
sl_customization.m file.

When convert_custom_registration executes, it searches for
custom_user_type_registration.m and custom_user_object_type_info.m
on the MATLAB path, obtains custom registration information from the
files, and generates sl_customization.m in the current work directory. If
no custom registration information is found, sl_customization.m is not
generated.

When you invoke convert_custom_registration, you optionally can provide
an argument of 0, to specify that any existing sl_customization.m in the
current work directory should be overwritten, or 1, to specify that any existing
sl_customization.m in the current work directory should be renamed to
sl_customization_old.m. The default action is to overwrite the existing file,
if any. For example:

>> convert_custom_registration(1) % Generate sl_customization.m without overwriting

mpt Signal Object Enhancements
Prior to R2006a, you could initialize a signal if you defined it as an mpt signal
object. With the introduction of initial value support for Simulink signal
objects, the support for signal object initialization for the two object types
has merged. Initialization of mpt signal objects is semantically the same as
it has been in previous releases. However, the merge has resulted in the
following enhancements:

• You can initialize mpt signal objects for simulation and code generation.
Prior to R2006a, you could initialize them for code generation only.

• Consistency checks are done to ensure that initial values you set match
corresponding block parameters that specify initial conditions or values.
Prior to R2006a, consistency checks were not performed.

50



Version 4.4 (R2006a) Real-Time Workshop® Embedded Coder™ Software

• You can initialize signals that have an exported storage class. Prior to
R2006a, you could initialize signals with an mpt.Signal class only.

• The Source of initial values option on the Data Placement pane of the
Configuration Parameters dialog box is no longer needed. Although the
option is visible, the setting has no effect.

• If you try to initialize an mpt signal object that represents a constant
sample time, Simulink now ignores the initial value and generates a
warning. Prior to R2006a, you could initialize such an mpt signal object
without being notified of the error.

Note The code generated for mpt signal object initialization might vary
slightly from code generated in previous releases.

For more information about the new initial value support for Simulink
signal objects, see “Using Signal Objects to Initialize Signals and Discrete
States” in the Simulink documentation and “Using Signal Objects to Initialize
Signals and Discrete States” in the Real-Time Workshop documentation. For
details on mpt data objects, see “Creating Simulink and mpt Data Objects”
in the Real-Time Workshop Embedded Coder Module Packaging Features
documentation. For information on options for controlling how signals in a
model are stored and represented in generated code, see “Signal Storage,
Optimization, and Interfacing” in the Real-Time Workshop documentation.

51



Real-Time Workshop® Embedded Coder™ Release Notes

New IncludeERTFirstTime Model Configuration
Parameter
V4.4 (R2006a) Real-Time Workshop Embedded Coder introduces a new model
configuration parameter, IncludeERTFirstTime. This parameter specifies
whether Real-Time Workshop Embedded Coder is to include the firstTime
argument in the model_initialize function generated for the model. By
default, the parameter is set to on to include the argument.

Note The setting for IncludeERTFirstTime must be consistent throughout a
model reference hierarchy.

New ERTFirstTimeCompliant Target Configuration
Parameter
V4.4 (R2006a) Real-Time Workshop Embedded Coder introduces a new target
configuration parameter, ERTFirstTimeCompliant. This parameter indicates
whether a target supports the ability to control inclusion of the firstTime
argument in the model’s model_initialize function. You set this parameter
in the SelectCallback function.

By default, the parameter is set to off for custom and non-ERT targets,
and on for the ERT target. (The ERT target has been enhanced to support
conditional inclusion of firstTime in the model_initialize function.)

When this parameter is set to off and you attempt to set the new model
parameter IncludeERTFirstTime to off, Real-Time Workshop Embedded
Coder ignores the request and issues a warning indicating that you need to
make the target compliant.

To make a target compliant,

1 Use the SelectCallback function to set ERTFirstTimeCompliant to on.

2 If your target uses a custom static main program, update it to handle the
inclusion and suppression of the firstTime argument for a given model.
One way to do this is to

52



Version 4.4 (R2006a) Real-Time Workshop® Embedded Coder™ Software

a Make sure the target TLC file assigns 1 to AutoBuildProcedure when
using a static main program. For example,

%assign AutoBuildProcedure = !GenerateSampleERTMain

b In the generated header file autobuild.h, the macro
INCLUDE_FIRST_TIME_ARG will be set to 0 if the
IncludeERTFirstTime parameter is set to off or 1 if the
parameter is set to on.

c Inside the static main program, make sure to #include
autobuild.h and then conditionally compile declarations and
calls to the model_initialize function, based on the value of the
INCLUDE_FIRST_TIME_ARG macro.

firstTime Argument to model_initialize Function
In a future release, Real-Time Workshop Embedded Coder will no longer
use the firstTime argument in a model’s generated model_initialize
function. For more information about this change, use the form at
http://www.mathworks.com/contact_TS.html to contact The MathWorks
Technical Support.

Data Object Wizard Script for Labeling Root I/O
Signals Based on Inport/Outport Names
This release includes a Data Object Wizard script,
propagate_rootio_signal_names, that labels a Simulink model’s unlabeled
root I/O signals based on the corresponding root Inport/Outport names.
Signals that are already labeled are not affected.

The script takes the name of a Simulink model in the current working
directory as an input argument. It returns

• 1 if it completed without error

• 0 and an error message if it failed to complete due to an error

• -1 and an error message if it completed but found a naming inconsistency

The script locates unlabeled signals connected with root I/O ports in the
specified model. Each unlabeled signal will be labeled using its port name,

53

http://www.mathworks.com/contact_TS.html


Real-Time Workshop® Embedded Coder™ Release Notes

provided that the port name is a valid C identifier, is not a C keyword, and
does not conflict with other signal and parameter names in the model. If the
specified model is not already open, the script opens the model for viewing.
You can examine the modifications and decide whether to save the model
with the changes.

For a simple demonstration of this functionality, launch rtwdemo_counter and
save the model to your current working directory as rtwdemo_counter_test.
You can then run the propagate_rootio_signal_names script on the saved
model using either of the following MATLAB commands:

propagate_rootio_signal_names('rtwdemo_counter_test')

[status,errMsg] = propagate_rootio_signal_names('rtwdemo_counter_test')

In the resulting display of rtwdemo_counter_test, signal labels will have been
added to the model diagram. You can relaunch the original rtwdemo_counter
and visually compare rtwdemo_counter with rtwdemo_counter_test.

New and Enhanced Demos
The following demos have been added:

Demo... Shows How You Can...

rtwdemo_export_functions Export function-call subsystems

rtwdemo_memsec Insert pragmas for functions and data in
generated code

The following demos have been enhanced:

• rtwdemo_namerules

• rtwdemo_symbols

54



Version 4.3 (R14SP3) Real-Time Workshop® Embedded Coder™ Software

Version 4.3 (R14SP3) Real-Time Workshop® Embedded
Coder™ Software

This table summarizes what’s new in Version 4.3 (R14SP3):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations,
below. See also
Summary.

Bug Reports
Includes fixes

No

New features and changes introduced in this version are

• “Data Type Replacement” on page 55

• “HeaderFile Property Now Optional as Part of GetSet Data Object” on
page 56

• “Data Object Wizard Enhancements” on page 57

• “Global Data Stores Can Be Initialized Using mpt.Signal Object’s
RTWInfo.InitialValue Property” on page 57

• “ERT Automatic Configuration Changes” on page 58

• “Documentation Enhancements” on page 59

Data Type Replacement
This release provides the ability to replace built-in data type names with
user-defined replacement data type names in the generated code for ERT
target models.

As in previous releases, you can register user-defined data types and specify
their associated header files using mechanisms described in the “Managing
the Data Dictionary” chapter of the Real-Time Workshop Embedded Coder
Module Packaging Features document. User-defined data types can be
automatically created as Simulink.AliasType objects in the base workspace.

55

http://www.mathworks.com/support/bugreports/?product=EC&release;=R14SP3
http://www.mathworks.com/support/bugreports/?product=EC&release;=R14SP3


Real-Time Workshop® Embedded Coder™ Release Notes

This release augments the existing mechanisms for registering user-defined
data types by adding:

• The Data Type Replacement pane, a new subpane under the Real-Time
Workshop pane of the Configuration Parameters dialog box. This pane
provides an improved user interface for mapping built-in data types to
user-defined replacement data types.

• Consistency checks to ensure that your specified data type replacements
are consistent with your model’s data types.

• Many-to-one data type replacement, the ability to map multiple built-in
data types to one replacement data type in generated code. For example,
built-in data types uint8 and boolean could both be replaced in your
generated code by a data type U8 that you have previously defined.

Data type replacement is available for code generated using Real-Time
Workshop Embedded Coder, whether from Simulink, Stateflow charts, or
Embedded MATLAB blocks.

For details on specifying replacement data types for a Simulink model, see
“Replacing Built-In Data Type Names in Generated Code” in the Real-Time
Workshop Embedded Coder documentation. For limitations that apply, see
“Data Type Replacement Limitations” in the Real-Time Workshop Embedded
Coder documentation.

HeaderFile Property Now Optional as Part of GetSet
Data Object
In previous releases, a Simulink.Signal or mpt.Signal object of custom
storage class GetSet was required to specify its HeaderFile property. The
specified header file was then added as an #include in the generated code.

This release makes it optional to specify the HeaderFile property on data
objects of the GetSet custom storage class. This accommodates users who
prefer to use a model’s custom code options to include header files.

56



Version 4.3 (R14SP3) Real-Time Workshop® Embedded Coder™ Software

Note If you omit the HeaderFile property for a GetSet data object, you
must specify a header file by an alternative means, such as the Header file
field of the Real-Time Workshop/Custom Code pane of the Configuration
Parameters dialog box. Otherwise, the generated code might not compile or
might function improperly.

Data Object Wizard Enhancements
The Data Object Wizard has been enhanced with new search options for
including or omitting the following types of data objects for searches:

Alias types
Block outputs
Data stores
Parameters
Root inputs
Root outputs
States

For details on these enhancements, see “Data Object Wizard” in the Simulink
documentation.

Global Data Stores Can Be Initialized Using
mpt.Signal Object’s RTWInfo.InitialValue Property
Global data stores may be defined in the base workspace using mpt.Signal
objects (as well as Simulink.Signal objects or any of the subclasses of
Simulink.Signal). In Release 14SP3, you can use the mpt.Signal object’s
RTWInfo.InitialValue property to initialize a global data store.

If you set the RTWInfo.InitialValue property of the mpt.Signal object to
a nonempty value, the value of that property becomes the initial condition
of the global data store. If the InitialValue property of the object is empty
([]), the initial value of the global data store remains 0 (for example, false
for Boolean data).

57



Real-Time Workshop® Embedded Coder™ Release Notes

ERT Automatic Configuration Changes
If you generate code for ERT-based models that use the automatic model
configuration feature, you should be aware of the following auto-configuration
related changes in this release. If you supply your own script for ERT
auto-configuration, you should consider modifying your code to take
advantage of these changes.

• The ert_config_opt auto-configuration function that is invoked at the
'entry' hook during code generation now additionally runs at target
selection time (that is, when you use the Real-Time Workshop pane of the
Configuration Parameters dialog box to select an auto-configuration target).

• To support this dual invocation, the ert_config_opt function now
takes variable input arguments. The second argument still specifies
'optimized_fixed_point' or 'optimized_floating_point' as
before, but the first argument now specifies either a model name,
for 'entry'-hook invocation, or a configuration set handle, for
target-selection invocation. (The function is located in the file
matlabroot/toolbox/rtw/targets/ecoder/ert_config_opt.m.)

• The 'entry' hook in the example hook file ert_make_rtw_hook.m has
added code to report changes in the configuration set caused by invoking
ert_config_opt (via gateway routine ert_auto_configuration) during
code generation. (The example 'entry' hook is located in the file
matlabroot/toolbox/rtw/targets/ecoder/ert_make_rtw_hook.m.)

Compatibility Considerations
If you supply your own auto-configuration script in place of the default version
of ert_config_opt, your auto-configuration code will continue to be invoked
and execute at the 'entry' hook. However, to additionally run your code at
target selection time, you must modify your script to support the variable
input arguments in the manner shown in ert_config_opt.m.

58



Version 4.3 (R14SP3) Real-Time Workshop® Embedded Coder™ Software

Documentation Enhancements
The following areas of the Real-Time Workshop Embedded Coder
documentation have been corrected or improved:

• “Basic Tutorial” in the Module Packaging Features documentation

• “Comparison of a Template and Its Generated File” in the Module
Packaging Features documentation

• “mpt Parameter and Signal Properties” in the Module Packaging Features
documentation

59



Real-Time Workshop® Embedded Coder™ Release Notes

Version 4.2.1 (R14SP2+) Real-Time Workshop® Embedded
Coder™ Software

This table summarizes what’s new in Version 4.2.1 (R14SP2+):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

No No Bug Reports
Includes fixes

No

60

http://www.mathworks.com/support/bugreports/?product=EC&release;=R14SP2%2B
http://www.mathworks.com/support/bugreports/?product=EC&release;=R14SP2%2B


Version 4.2 (R14SP2) Real-Time Workshop® Embedded Coder™ Software

Version 4.2 (R14SP2) Real-Time Workshop® Embedded
Coder™ Software

This table summarizes what’s new in Version 4.2 (R14SP2):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations,
below. See also
Summary.

Bug Reports
Includes fixes

No

New features and changes introduced in this version are

• “C++ Target Language Support” on page 61

• “External Mode Support for ERT VxWorks Example Target” on page 62

• “Custom Storage Classes with ERT S-Functions” on page 62

• “Consistency Checking for ERT Target Options” on page 62

• “Model Explorer “Alias Override Naming Rule” Check Box Removed” on
page 63

• “Model Explorer Data Object Header File No Longer Generated If Header
File Name Is Not Specified” on page 63

• “Enhanced MPF Documentation of Managing Data Dictionary” on page 64

• “File custom_user_type_registration.m No Longer Automatically Called
During Code Generation” on page 64

C++ Target Language Support
This release introduces support for generating C++ code. The primary use
for this feature is to facilitate integration of generated code with legacy or
custom user code written in C++. For detailed information about C++ code
generation, see “Choosing and Configuring a Compiler” and “Integrating
Legacy and Custom Code” in the Real-Time Workshop documentation.

61

http://www.mathworks.com/support/bugreports/?product=EC&release;=R14SP2
http://www.mathworks.com/support/bugreports/?product=EC&release;=R14SP2


Real-Time Workshop® Embedded Coder™ Release Notes

External Mode Support for ERT VxWorks Example
Target
The ERT VxWorks example target now includes full support for Simulink®

external mode. External mode lets you use your Simulink block diagram
as a front end for a target program that runs on external hardware or in a
separate process on your host computer, and allows you to tune parameters
and view or log signals as the target program executes. With this release, you
can generate code to support external mode communication between host
(Simulink) and ERT VxWorks target systems. For more information, see
“Using External Mode with the ERT Target” in the Real-Time Workshop
Embedded Coder documentation.

Custom Storage Classes with ERT S-Functions
Custom storage classes (CSCs) now can be used with ERT S-functions. This
capability was disabled in Version 4.0, Release 14, and is reenabled in this
release.

For more information, see “Custom Storage Classes” in the Real-Time
Workshop Embedded Coder documentation.

Consistency Checking for ERT Target Options
Pre-model-compilation consistency checking has been added to detect and
warn against conflicting combinations of ERT target configuration options.
(Configuration options that are available for the ERT target are described
in “Mapping Application Requirements to Configuration Options” in the
Real-Time Workshop Embedded Coder documentation.)

Error messages now are issued for the following conflicts:

• GRT compatible call interface (GRTInterface) is on and Support
floating-point numbers (!PurelyIntegerCode) is off

• MAT-file logging (MatFileLogging) is on and Support floating-point
numbers (!PurelyIntegerCode) is off

• Support non-finite numbers (SupportNonFinite) is off and MAT-file
logging (MatFileLogging) is on

62



Version 4.2 (R14SP2) Real-Time Workshop® Embedded Coder™ Software

• GRT compatible call interface (GRTInterface) is on and Single
update/output function (CombineOutputUpdateFcns) is on

• MAT-file logging (MatFileLogging) is on and Terminate function
required (IncludeMdlTerminateFcn) is off

• MAT-file logging (MatFileLogging) is on and Suppress error status in
real-time model data structure (SuppressErrorStatus) is on

Warning messages now are issued for the following conflicts:

• Support non-finite numbers (SupportNonFinite) is off and Support
non-inlined s-functions (SupportNonInlinedSFcns) is on

• Support non-finite numbers (SupportNonFinite) is on and Support
floating-point numbers (!PurelyIntegerCode) is off

• Support non-inlined S-functions (SupportNonInlinedSFcns) is on and
Support floating-point numbers (!PurelyIntegerCode) is off

Model Explorer “Alias Override Naming Rule” Check
Box Removed
Before this release, the Model Explorer allowed you to select the Alias
override naming rule option for an mpt data object. As explained in the
Module Packaging Features document, this resulted in the name that you
typed in the Alias field overriding the global naming rule for the selected data
object. This only applied to mpt data objects, not to Simulink data objects.

This release removes the Alias overrides naming rule check box. Now,
the override works the same way for mpt and for Simulink data objects: As
explained in the documentation, if the Alias field is empty, the global naming
rule (that you select on the Configuration Parameters dialog box) applies to
all data objects. But if you do specify a name in the Alias field, this overrides
the naming rule for that data object. There is no need for the check box.

Model Explorer Data Object Header File No Longer
Generated If Header File Name Is Not Specified
Before this release, when you specified a Definition file name on the Model
Explorer dialog box for a data object and did not specify a Header file name,
the code generator generated a header file in which it declared the data object.

63



Real-Time Workshop® Embedded Coder™ Release Notes

The code generator used the same name for the header file (for example,
data.h) as you specified for the definition file (for example, data.c).

With this release, when you specify a Definition file name and do not specify
a Header file name, the code generator does not generate a header file. The
code generator declares the data object according to the global naming rule.
In this case, the code generator assumes that you do not want it to generate
the header file.

Enhanced MPF Documentation of Managing Data
Dictionary
This release restructures the “Managing the Data Dictionary” chapter in
Module Packaging Features. The revised material explains how to create
Simulink data objects using the Data Object Wizard, and compares this with
creating mpt data objects.

File custom_user_type_registration.m No Longer
Automatically Called During Code Generation
Beginning with Real-Time Workshop Embedded Coder 4.2 (R14SP2),
the file custom_user_type_registration.m, which you provide if
you want to register user-defined data types, no longer is called
automatically during code generation. Instead, after modifying and
saving your custom_user_type_registration.m file, you must create the
Simulink.AliasType objects corresponding to your user-defined data types
before generating code. For a description of the R14SP2 and R14SP3 procedure
for using custom_user_type_registration.m to register user-defined data
types, see “Creating User Data Types” in the R14SP2 or R14SP3 Real-Time
Workshop Embedded Coder Module Packaging Features document.

Compatibility Considerations
The following compatibility consideration applies if you are upgrading from
V4.1 (R14SP1) to V4.2 (R14SP2), V4.2.1 (R14SP2+), or V4.3 (R14SP3). If you
are upgrading to V4.4 (R2006a) from V4.1 or later, see the release notes for
“Version 4.4 (R2006a) Real-Time Workshop® Embedded Coder™ Software”
on page 42 .

64



Version 4.2 (R14SP2) Real-Time Workshop® Embedded Coder™ Software

If you modified and saved custom_user_type_registration.m in
V4.1 (R14SP1), you must now create the Simulink.AliasType objects
corresponding to your user-defined data types before generating code for your
model. For example, you can:

• Invoke the MATLAB function ec_create_type_obj to programmatically
create all the required Simulink.AliasType objects

• Create Simulink.AliasType objects one at a time by selecting
Add > Simulink.AliasType in the Model Explorer

• Create Simulink.AliasType objects one at a time by entering the MATLAB
command userdatatype = Simulink.AliasType, where userdatatype is
a user-defined data type registered in custom_user_type_registration.m

65



Real-Time Workshop® Embedded Coder™ Release Notes

Version 4.1 (R14SP1) Real-Time Workshop® Embedded
Coder™ Software

This table summarizes what’s new in Version 4.1 (R14SP1):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

No Fixed bugs No

New features and changes introduced in this version are described here:

Significant Documentation Corrections
Documentation for Real-Time Workshop Embedded Coder in Version
4.1 corrects errors, omissions, and inconsistencies in the Version 4.0
documentation. Topics affected most significantly by these changes include
the following:

• Discussion of data structures and code modules

• Description of the static main program module

• Discussion of the interaction between Simulink block comments and
Simulink block description configuration parameters

• Custom storage classes

• Template makefile modifications for supporting model reference features

• Description of makefile variable SYS_TARGET_FILE

• Custom target configuration tutorial

• Interfacing an integrated development environment

• Tradeoffs for device driver development

• Writing a device driver C-mex S-function

• Single-model approach to using device drivers in simulation

66



Version 4.1 (R14SP1) Real-Time Workshop® Embedded Coder™ Software

• Addition of a basic tutorial to the “Getting Started” chapter of Module
Packaging Features

• Addition of data placement rules in the “Reference Tables” appendix of
Module Packaging Features

67



Real-Time Workshop® Embedded Coder™ Release Notes

Version 4.0 (R14) Real-Time Workshop® Embedded
Coder™ Software

This table summarizes what’s new in Version 4.0 (R14):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

Yes—See “Upgrading
from R13SP1+ or
R13SP2” on page
85 and “Generating
R13SP1+ or R13SP2
Code From ERT-Based
Simulink Models
Created In R14 or
Later” on page 94. See
also Summary.

Fixed bugs No

New features and changes introduced in this version are

• “Expanded Documentation Collection” on page 69

• “New ERT Target Options User Interface” on page 70

• “GRT and ERT Target Unification” on page 76

• “Support for Continuous Time Blocks” on page 77

• “Support for Continuous Solvers” on page 77

• “Support for Noninlined S-Functions” on page 78

• “Module Packaging Features” on page 78

• “ASAP2 File Generation Changes” on page 80

• “Code Generation with User-Defined Data Types” on page 80

• “Enhanced Custom Storage Classes” on page 81

• “More Efficient Multi-Rate Multitasking Code Generation” on page 82

• “More Efficient Task Scheduling for RTOS Targets” on page 83

68



Version 4.0 (R14) Real-Time Workshop® Embedded Coder™ Software

• “New Callbacks Defined for System Target Files” on page 83

• “New Option to Control Template Makefile Output Display” on page 84

• “Demo Updates” on page 84

• “Upgrading from R13SP1+ or R13SP2” on page 85

• “Generating R13SP1+ or R13SP2 Code From ERT-Based Simulink Models
Created In R14 or Later” on page 94

Expanded Documentation Collection
The Real-Time Workshop Embedded Coder documentation collection has been
expanded and includes following documents:

User’s Guide Describes Embedded Real-Time (ERT) model
execution, timing, and task management; the
rtModel data structure; how to interface to and
call model code; ERT code generation options
and optimization tips; custom storage classes;
and advanced code generation techniques.

Module Packaging Features Describes features teams of engineers can
apply to generate ANSI/ISO C production code
and executables for large-scale, multimodel
control system applications.

Developing Embedded Targets Describes requirements and implementation
details for creating custom embedded targets
based on the ERT target. It includes detailed
information on the structure and organization
of target directories, system target files,
and template makefiles; how to support
the Real-Time Workshop model referencing
feature; how to implement device drivers;
and operation of the build process and how to
customize it.

69



Real-Time Workshop® Embedded Coder™ Release Notes

New ERT Target Options User Interface
You can configure ERT target code generation options in the new Simulink
Model Explorer and Configuration Parameters dialog box. Before working
with the ERT target in this new environment, you should become familiar with

• Configuration sets and how to view and edit them in Model Explorer and
the Configuration Parameters dialog box. See Using Simulink for details.

• The general Real-Time Workshop code generation options and use of the
System Target File Browser. See the Real-Time Workshop documentation
for details.

Some panes of the new Configuration Parameters dialog box (for example, the
Templates and Interface panes) contain only ERT-specific options. Others,
such as the Real-Time Workshop pane, display a combination of general
Real-Time Workshop options and ERT target options.

Note If you have developed a custom target based on the ERT target (or
any other Real-Time Workshop target) see “Defining and Displaying Custom
Target Options” on page 87 for a discussion of compatibility issues that may
affect the appearance and operation of your target.

The following table summarizes new and revised ERT target code generation
options.

Pane and Subpane Option Usage

Real-Time Workshop Include hyperlinks to model Include or suppress hyperlinks
from generated code to the
source blocks in the model.

Launch report after code
generation completes

Automatically display the
HTML report in a MATLAB
web browser window after
code generation.

70



Version 4.0 (R14) Real-Time Workshop® Embedded Coder™ Software

Pane and Subpane Option Usage

Real-Time Workshop:
Comments

Simulink block descriptions Include text specified in
the Description field of
Block Properties dialogs as
comments in the generated
code for the corresponding
blocks.

Stateflow object descriptions Include text specified in the
Description field of state
object Properties dialogs as
comments in the generated
code for the corresponding
objects.

Simulink data object
descriptions

Include text specified in the
Description field of object
properties defined in the
Simulink Model Explorer as
comments in the generated
code for the corresponding
objects.

Custom comments (mpt objects
only)

Include comments just
above signals and parameter
identifiers in the generated
code as specified in an M-code
or TLC function.

Real-Time Workshop: Symbols Symbol format Customize generated symbols
for signals, parameters, and
other objects in a model based
on a macro string that specifies
whether and in what order
substrings are to be included
in the symbols.

71



Real-Time Workshop® Embedded Coder™ Release Notes

Pane and Subpane Option Usage

Minimum mangle length Specify the minimum number
of characters to be used
for name mangling strings
generated and applied to
symbols to avoid name
collisions.

Maximum identifier length Specify the maximum number
of characters that can be
used in generated function,
typedef, and variable names.

Generate scalar inline
parameters as

Control how scalar inlined
parameter values are
expressed in generated code.

#define naming Define rules that change the
names of a model’s parameters
that have a storage class of
Define.

Parameter naming Define rules that change the
names of all of a model’s
parameters.

Signal naming Define rules that change the
names of a model’s signals.

Real-Time Workshop:
Interface

Target floating-point math
environment

Specify the math library to be
used. Support for the GNU C
math library was added as an
option.

Support floating-point
numbers

Enable or suppress the
generation of floating-point
numbers. To generate pure
integer code, clear this option.

Support complex numbers Enable or suppress the
generation of complex
numbers.

72



Version 4.0 (R14) Real-Time Workshop® Embedded Coder™ Software

Pane and Subpane Option Usage

Support non-finite numbers Enable or suppress the
generation of nonfinite
numbers.

Support absolute time Generate integer counters that
provide absolute or elapsed
time values for blocks in the
model.

Support continuous time Generate code for continuous
time blocks.

Pass root-level I/O as Control how input and output
values at the root level of
the model are passed to the
model_step function. Enable
only if you select Generate
reusable code.

GRT compatible call interface Use ERT features with a
GRT-based custom target that
has a main program based on
grt_main.c.

Data Exchange: Interface Generate external mode
support code, ASAP2 data files,
or C API code for monitoring
signals and parameters.

Real-Time Workshop:
Templates

Source file (*.c) template Create or edit a code template.

Source file (*.h) template Create or edit a data template.

File customization template Specify a custom file
processing (CFP) template,
which organizes generated
code into sections – includes,
typedefs, functions, and so on.

Generate an example main
program

Control whether ert_main.c
is generated.

73



Real-Time Workshop® Embedded Coder™ Release Notes

Pane and Subpane Option Usage

Target operating system Generate a bareboard main
program designed to run under
control of a real-time clock
without a real-time operation
system or a fully commented
example showing how to
deploy the code under the
VxWorks real-time operating
system.

Real-Time Workshop: Data
Placement

Data definition Specify whether data is to
be defined in the generated
source file or in a single
separate header file.

Data reference Specify whether data is to
be declared in the generated
source file or in a single
separate header file

Module naming Name the generated module
using the same name as the
model or a user-specified
name.

Signal display level Specify whether to declare
signal data objects as global
data in the generated code.

Parameter tune level Declare a parameter data
object as tunable global data
in the generated code.

#include file delimiter Specify the #include file
delimiter to be used in
generated files that contain
the #include preprocessor
directive for MPF data objects.

Source of initial values Specify the source that
initializes the model’s signals
in the generated code.

74



Version 4.0 (R14) Real-Time Workshop® Embedded Coder™ Software

Pane and Subpane Option Usage

Optimization Application lifespan (days) Minimize the allocation
of memory for absolute
and elapsed time counters
generated for blocks that
require an absolute or elapsed
time value. The word size
of the counters is allocated
optimally to accommodate
the maximum value that you
specify for this parameter.

Remove root-level I/O zero
initialization

Specify whether initialization
code for root-level inports
and outports with a value
of zero are to be generated.
Previously labeled Initialize
external data. Default is now
cleared rather than set.

Remove internal state zero
initialization

Specify whether initialization
code for work structures, such
as block states and block
outputs, are to be generated.
Previously labeled Initialize
internal data. Default is now
cleared rather than set.

Use memset to initialize floats
and doubles

Specify whether internal
storage, regardless of type, is
to be cleared to the integer bit
pattern 0 or the memset
function is to set float
and double storage to 0.0.
Previously labeled Initialize
Floats and Doubles to 0.0.
Default is now cleared rather
than set.

75



Real-Time Workshop® Embedded Coder™ Release Notes

Pane and Subpane Option Usage

Optimize initialization code
for memory reference

Specify whether a model
contains an enabled subsystem
and will be referred to by
another model with a Model
block. If these conditions exist,
the option should be cleared.

Remove code that protects
against division arithmetic
exceptions

Suppress generation of code
that guards against fixed-point
division by zero exceptions.

Note The Symbol format option supports all functions previously
implemented by the Prefix model name to global identifiers, Include
system Hierarchy Number in Identifiers, and Include data type
acronym in identifier options in a more compact form. The Symbol format
option replaces all these options. However, existing models will continue to
generate code that respects the settings of the previous options.

Detailed descriptions of options specific to the ERT target are provided in:

• The “Code Generation Options and Optimizations” chapter of the Real-Time
Workshop Embedded Coder documentation.

• The Module Packaging Features document.

GRT and ERT Target Unification
Release 14 introduced Generic Real-Time (GRT) and Embedded Real-Time
(ERT) target unification enhancements. The enhancements include the
following changes to the underlying technology for Real-Time Workshop and
Real-Time Workshop Embedded Coder.

• Both products use a common format for backend generated code.

• The feature list common to both products is expanded.

76



Version 4.0 (R14) Real-Time Workshop® Embedded Coder™ Software

• Some features and efficiencies formerly exclusive to the ERT target are
now available to the GRT target. Conversely, the ERT target now supports
some features that were previously available only with the GRT target.

• Conversion from GRT-based targets to ERT-based targets is greatly
simplified.

See the Version 6.0 (R14) Real-Time Workshop Release Notes for a high-level
overview and comparison of feature enhancements and compatibility issues
that result from target unification in Real-Time Workshop 6.0 and Real-Time
Workshop Embedded Coder 4.0.

Support for Continuous Time Blocks
The ERT target now supports code generation for continuous time blocks. If
you select the Support continuous time option in the Interface subpane
under Real-Time Workshop on the Configuration Parameters dialog box,
you can use any such blocks in your models, without restriction.

Note that use of certain continuous time blocks is not recommended for
production code generation for embedded systems. The Simulink Block Data
Type Support table summarizes characteristics of blocks in the Simulink and
Fixed-Point block libraries, including whether or not they are recommended
for use in production code generation. To view this table, execute the following
MATLAB command:

showblockdatatypetable

Then, refer to the “Recommended for Production Code?” column of the table.

Support for Continuous Solvers
The ERT target now supports continuous solvers. You can select any solver
from the Solver menu on the Solver pane of the Configuration Parameters
dialog box. However, note that the solver Type must be fixed-step for use
with the ERT target, as in previous releases.

77



Real-Time Workshop® Embedded Coder™ Release Notes

Note Custom targets must be modified to support continuous time. The
required modifications are described in “Supporting Continuous Time in
Custom Targets” on page 89.

Support for Noninlined S-Functions
In previous releases, the ERT target required that all S-functions in a model
be inlined with a corresponding TLC file for code generation. This restriction
has been removed. Models can now include noninlined S-functions.

To enable support for noninlined S-functions, select the Support non-inlined
S-functions option in the Interface subpane under Real-Time Workshop
on the Configuration Parameters dialog box.

Note that inlining S-functions is often advantageous in production code
generation, for example in implementing device drivers. See “Tradeoffs in
Device Driver Development” in the Developing Embedded Targets document
for a discussion of the pros and cons.

Module Packaging Features
Module Packaging Features (MPF) are a major subcomponent of the
Real-Time Workshop Embedded Coder. These features enable teams of
engineers to apply the Real-Time Workshop Embedded Coder for generating
ANSI/ISO production code and executables for large-scale, multimodel control
system applications.

The Module Packaging Features document describes these features in detail.
This note summarizes the capabilities of MPF.

Introduction
With MPF, you can

• Package the generated code into the desired number of .c and .h files.

• Control the internal organization of each of the generated files. For
example, for readability, your company may have software standards that
define where to place comments and sections of code within files.

78



Version 4.0 (R14) Real-Time Workshop® Embedded Coder™ Software

• Control whether or not the generated files contain definitions for a model’s
global identifiers. If such definitions exist, you determine the files in which
the code generator places them. Also, you can specify the generated files
where the code generator places global data (extern) declarations.

In addition to meeting the preceding packaging needs, you can use MPF to

• Register user-defined data types.

• Customize comments.

• Locate variables in target memory where desired.

You implement these features with available dialogs, user-definable
templates, and M-scripts.

MPF Feature Summary
This section summarizes the module packaging features introduced in
Real-Time Workshop Embedded Coder Version 4.0. MPF allows you to

• Select or define MPF template files. You can generate the desired .c and
.h files and organize them the way you want. Also, these templates include
template symbols whose locations in a template file determine where
comments and code is located in the individual generated files.

• Manage the code generation data dictionary. This allows

- Registering user-defined data types

- Importing data objects into the code generation data dictionary from
a .mat file of a previous Simulink session or from an external data
dictionary (such as an Excel file)

- Adding Simulink data objects using the Data Object Wizard

- Changing the alphabetical case and spellings that identifier names have
in the generated code

• Select additional miscellaneous and advanced options. These include

- Instructing the code generator to use the angle-bracket delimiter (for
multiple data objects), instead of the double-quotation delimiter.

79



Real-Time Workshop® Embedded Coder™ Release Notes

- Selecting the source that initializes each of the model’s signals in the
generated code.

- Adding a selected data object’s property values as a comment in a
generated file above that data object’s identifier.

- Adding a comment to the model using the Simulink DocBlock so that
this comment appears in the generated file where desired.

• Manage file placement of data declarations. You can determine whether or
not the generated files contain defining declarations for a model’s global
identifiers. If defining declarations exist, you can determine the files in
which the code generator places them. Also, you can determine the files
where the code generator places global data reference (extern) declarations.

ASAP2 File Generation Changes
ASAP2 file generation is now available to all Real-Time Workshop targets.
The documentation for this feature has been relocated to “Generating an
ASAP2 File” in the Real-Time Workshop documentation.

Code Generation with User-Defined Data Types
Real-Time Workshop Embedded Coder now supports user-defined data type
objects in code generation. Supported objects include objects of the following
classes:

• Simulink.NumericType

• Simulink.StructType

• Simulink.Bus

• Simulink.Aliastype

In code generation, you can use user-defined data type objects to map your
own data type definitions to Simulink built-in data types, and to generate
#include directives specifying your own header files, containing your data
type definitions.

See the “Advanced Code Generation Techniques” chapter of the Real-Time
Workshop Embedded Coder documentation for details.

80



Version 4.0 (R14) Real-Time Workshop® Embedded Coder™ Software

Enhanced Custom Storage Classes
The Real-Time Workshop Embedded Coder has extended the built-in
storage classes provided by Real-Time Workshop. The Real-Time Workshop
Embedded Coder now includes:

• A set of custom storage classes (CSCs). CSCs are designed to be useful
in code generation for embedded systems development. The new
enhanced and expanded CSC functionality has been incorporated into the
Simulink.Signal and Simulink.Parameter classes. This simplifies code
generation with CSCs, since you can use familiar signal and parameter
objects for this purpose.

• The new Custom Storage Class Designer (cscdesigner) tool. The Custom
Storage Class Designer lets you define additional CSCs that are tailored to
your code generation requirements. The Custom Storage Class Designer
provides a graphical user interface that lets you implement CSCs quickly
and easily. You can use your CSCs in code generation immediately, without
any TLC or other programming.

CSCs give you extended control over the constructs required to represent data
in an embedded algorithm. For example, you can use CSCs to

• Define structures for storage of parameter or signal data.

• Conserve memory by storing Boolean data in bit fields.

• Integrate generated code with legacy software whose interfaces cannot
be modified.

• Generate data structures and definitions that comply with your
organization’s software engineering guidelines for safety-critical code.

See the “Custom Storage Classes” chapter of the Real-Time Workshop
Embedded Coder User’s Guide for a detailed description of CSCs and the
Custom Storage Class Designer.

Compatibility with Previous CSCs
In prior releases, CSCs were implemented via special Simulink.CustomSignal
and Simulink.CustomParameter classes. We recommend that you consider
replacing Simulink.CustomSignal and Simulink.CustomParameter objects

81



Real-Time Workshop® Embedded Coder™ Release Notes

in your models with equivalent Simulink.Signal and Simulink.Parameter
objects.

Minor changes have been made in the Simulink.CustomSignal and
Simulink.CustomParameter classes. See “Custom Storage Class
Compatibility Issues” on page 86 for information on these changes.

More Efficient Multi-Rate Multitasking Code
Generation
Real-Time Workshop Embedded Coder now generates significantly faster code
for multirate multitasking models.

For multirate multitasking models, Real-Time Workshop Embedded Coder
uses a strategy called rate grouping. Rate grouping generates separate
model_step functions for the base rate task and each subrate task in the
model. The function naming convention for these functions is

model_stepN

where N is a task identifier. For example, for a model named my_model that
has three rates, the following functions are generated:

void my_model_step0 (void);
void my_model_step1 (void);
void my_model_step2 (void);

Each model_stepN function executes all blocks sharing tid N; in other words,
all block code that executes within task N is grouped into the associated
model_stepN function.

For other cases, Real-Time Workshop Embedded Coder generates a single
model_step function. This model_step function uses the same scheduling
technique (called rate guarding) as in previous versions of the product. When
rate guarding is used, a task identifier is passed in to the model_step function.

To take advantage of rate grouping for existing multirate multitasking
models, you must regenerate code, including the main program, ert_main.c.

82



Version 4.0 (R14) Real-Time Workshop® Embedded Coder™ Software

See the “Data Structures, Code Modules, and Program Execution” chapter
of the Real-Time Workshop Embedded Coder documentation for a complete
discussion of rate grouping.

More Efficient Task Scheduling for RTOS Targets
Using a new rtmStepTask macro, targets that employ the task management
mechanisms of an RTOS can eliminate certain redundant scheduling calls
during the execution of tasks in a multirate, multitasking model, thereby
improving performance of the generated code.

The redundant scheduling calls are still generated by default for backward
compatibility. However, you can suppress them by adding the following
TLC variable definition to your system target file before the %include
"codegenentry.tlc" statement:

%assign SuppressSetEventsForThisBaseRateFcn = 1

For more details on this feature, see “Optimizing Task Scheduling for
Multirate Multitasking Models on RTOS Targets” in the Real-Time Workshop
Embedded Coder documentation.

New Callbacks Defined for System Target Files
The Release 14 API for system target file callbacks provides three new
callback functions for use in system target files. Unlike rtwoptions callbacks,
these functions are associated with the target, not with its individual options.
The callbacks are installed as fields in the rtwgensettings structure of the
system target file. The callbacks, summarized in the next table, are fully
described in the “System Target Files” chapter of Developing Embedded
Targets.

Callback Function... Is Triggered...

rtwgensettings.SelectCallback During model loading and when you select a target
with the System Target File browser.

83



Real-Time Workshop® Embedded Coder™ Release Notes

Callback Function... Is Triggered...

rtwgensettings.ActivateCallback When the active configuration set of the model
changes. This could happen during model loading
and when you change the active configuration set.

rtwgensettings.postapplyCallback When you click Apply or OK after editing options
in the Configuration Parameters dialog box. The
function is called after the changes have been
applied to the configuration set.

Note If you have developed a custom target and you want it to be compatible
with model referencing, you must implement a SelectCallback function
to declare model reference compatibility. See the “Supporting Model
Referencing” chapter of Developing Embedded Targets.

New Option to Control Template Makefile Output
Display
A new template makefile option lets you control whether or not template
makefile output is displayed during the build process. To enable makefile
output display at all times (regardless of the setting of the Verbose build
option in the Real-Time Workshop Debugging pane) add the following macro
to your template makefile:

VERBOSE_BUILD_OFF_TREATMENT = PRINT_OUTPUT_ALWAYS

When you configure your template makefile this way, the Verbose build
option controls the display of other build process output (such as TLC
messages), but template makefile output is always displayed.

You should add this macro in the template makefile section that includes
other macros, such as BUILD_SUCCESS.

Demo Updates
This release includes a major update and reorganization of the Real-Time
Workshop and Real-Time Workshop Embedded Coder demo collection. If you

84



Version 4.0 (R14) Real-Time Workshop® Embedded Coder™ Software

are reading this document online in the MATLAB Help browser, you can open
the demo suite by clicking this link: rtwdemos.

Alternatively, you can access the demo suite by typing the name of the demo
library at the MATLAB command prompt:

rtwdemos

Upgrading from R13SP1+ or R13SP2
This section discusses the following issues pertaining to upgrades from
Real-Time Workshop Embedded Coder V3.2 (R13SP1+) or V3.2.1 (R13SP2) to
V4.0 (R14):

• “TMF File Update Required for Use with Release 14 or Higher If
Supporting ERT S-Function Generation” on page 85

• “Custom Storage Class Compatibility Issues” on page 86

• “Defining and Displaying Custom Target Options” on page 87

• “Supporting Model Referencing in Custom Targets” on page 88

• “Supporting Continuous Time in Custom Targets” on page 89

• “rtwtypes.h Replaces tmwtypes.h” on page 90

• “Updating Customized Static Main Program Modules” on page 90

• “Integer Code Only Option Replaced” on page 92

• “Rate Grouping Compatibility Issues” on page 92

• “Real-Time Object Structure Obsoleted by Real-Time Model Structure”
on page 92

• “rtmIsSampleHit and rtmIsSpecialSampleHit Macros Obsolete” on page 93

• “RTWInfo Properties Assignment Warning Message” on page 93

TMF File Update Required for Use with Release 14 or Higher
If Supporting ERT S-Function Generation
To use a Release 13 based TMF that supports ERT S-function generation
with Release 14 or higher, you must update the TMF to include the following
definitions:

85



Real-Time Workshop® Embedded Coder™ Release Notes

LIBFIXPT=$(MATLAB_ROOT)\extern\lib\win32\microsoft\msvc50\libfixedpoint.lib

LIBS = $(LIBS) $(LIBFIXPT)

For example:

1 Search for an if statement similar to the following:

!if $(B_ERTSFCN) == 1
ERT_SFUN = ..\$(MODEL)_sf.$(MEXEXT)
ERT_SFUN_SRC = $(MODEL)_sf.c
MEX = $(MATLAB_BIN)\mex
!endif

The lines of code in the if statement may vary slightly depending on the
make utility you are using.

2 Add the LIBFIXPT and LIBS definitions between the MEX definition and
the !endif as follows:

!if $(B_ERTSFCN) == 1

ERT_SFUN = ..\$(MODEL)_sf.$(MEXEXT)

ERT_SFUN_SRC = $(MODEL)_sf.c

MEX = $(MATLAB_BIN)\mex

LIBFIXPT =$(MATLAB_ROOT)\extern\lib\win32\microsoft\msvc50\libfixedpoint.lib

LIBS = $(LIBS) $(LIBFIXPT)

!endif

For more examples, see the supplied Real-Time Workshop TMFs.

Custom Storage Class Compatibility Issues
Prior to 4.0, custom storage classes were implemented with special
Simulink.CustomSignal and Simulink.CustomParameter classes.

In 4.0 and higher, the full functionality of the Simulink.CustomSignal and
Simulink.CustomParameter classes is included in the Simulink.Signal and
Simulink.Parameter classes. Consider replacing Simulink.CustomSignal
and Simulink.CustomParameter objects in your models with equivalent
Simulink.Signal and Simulink.Parameter objects.

86



Version 4.0 (R14) Real-Time Workshop® Embedded Coder™ Software

If you prefer, you can continue to use the Simulink.CustomSignal and
Simulink.CustomParameter classes in the current release. However, note
that the following changes have been implemented in these classes:

• The Internal storage class has been removed from the enumerated values
of the RTWInfo.CustomStorageClass property. Internal storage class is
no longer supported.

• For the ExportToFile and ImportFromFile storage
classes, the RTWInfo.CustomAttributes.FileName and
RTWInfo.CustomAttributes.IncludeDelimeter properties have been
combined into a single property, RTWInfo.CustomAttributes.HeaderFile.
When specifying a header file, include both the filename and the required
delimiter as you want them to appear in generated code, as in the following
example:

myobj.RTWInfo.CustomAttributes.HeaderFile = '<myheader.h>';

• Prior to 4.0, you created user-defined CSCs by designing custom packages
that included the CSC definitions (as described in the cscdesignintro
tutorial demo). This technique for creating CSCs is obsolete. For a
description of the current procedure, which is much simpler, see “Creating
Packages with CSC Definitions” in the "Custom Storage Classes" chapter of
the Real-Time Workshop Embedded Coder documentation.

If you designed your own custom packages containing CSCs prior to 4.0,
The MathWorks strongly recommends that you convert them to 4.0 CSCs.
The conversion procedure is described in “Converting Older Packages to
Use CSC Registration Files” in the "Custom Storage Classes" chapter of the
Real-Time Workshop Embedded Coder documentation.

Defining and Displaying Custom Target Options
For Release 14, extensive improvements and revisions have been made in the
appearance and layout of code generation options and other target-specific
options for Real-Time Workshop targets. If you have developed a custom
target, you should take advantage of the Model Explorer and Configuration
Parameters dialogs to present target options to end users. If you choose not
to, a mechanism for using the old-style Simulation Parameters dialog box is
available for backwards compatibility.

87



Real-Time Workshop® Embedded Coder™ Release Notes

The “System Target Files” chapter of Developing Embedded Targets discusses
compatibility issues and solutions related to the definition and display of
target-specific options for custom targets.

• Callback compatibility: If the rtwoptions array in your custom system
target file contains callbacks, you must convert your callbacks to use the
callback compatibility API provided in this release. See “Using rtwoptions
Callbacks in Release 14 or Later” in the “System Target Files” chapter
of Developing Embedded Targets.

• Target options inheritance: If your custom target is derived from another
target and inherits options, you need change your system target file to
use a new inheritance mechanism. See “Target Options Inheritance in
Release 14 or Later” in the “System Target Files” chapter of Developing
Embedded Targets.

• Display of target options: Your target options are displayed differently, and
you might want to reorganize them. See “Target Options Display in Release
14 or Later” in the “System Target Files” chapter of Developing Embedded
Targets for information on how custom target options are displayed.

Supporting Model Referencing in Custom Targets
Existing custom targets require a number of modifications for code generation
compatibility with the model reference features introduced in Release 14. The
“Supporting Model Referencing” chapter of Developing Embedded Targets
provides the information you need to adapt your target to support model
referencing. Most of the guidelines concern required modifications to the
system target file and template makefile.

The list below summarizes general requirements and issues for model
reference compatibility that are discussed in the “Supporting Model
Referencing” chapter:

• A model reference compatible target must be derived from the ERT or
GRT targets.

• Your system target file must declare model reference compatibility.

• Your template makefile must define a number of makefile tokens, variables
and rules specifically for model referencing support.

88



Version 4.0 (R14) Real-Time Workshop® Embedded Coder™ Software

• To support model reference builds, your template makefile must support
use of the shared utilities directory.

• When generating code from a model that references another model, both
the top-level model and the referenced models must be configured for the
same code generation target.

• Note that the External mode option is not supported in model reference
Real-Time Workshop target builds. If the user has selected this option, it
is ignored during code generation.

For general information about model referencing, see the Real-Time Workshop
documentation.

Supporting Continuous Time in Custom Targets
As of Release 14, the ERT target supports continuous time. If you want
your custom ERT-based target to take advantage of this feature, you must
update your template makefile (TMF) and the static main program module
(for example, mytarget_main.c) for your target.

Template Makefile Modifications. Add the NCSTATES token expansion
after the NUMST token expansion, as follows:

NUMST = |>NUMST<|
NCSTATES = |>NCSTATES<|

In addition, add NCSTATES to the CPP_REQ_DEFINES macro, as in the following
example:

CPP_REQ_DEFINES = -DMODEL=$(MODEL) -DNUMST=$(NUMST) -DNCSTATES=$(NCSTATES) \

-DMAT_FILE=$(MAT_FILE)

-DINTEGER_CODE=$(INTEGER_CODE) \

-DONESTEPFCN=$(ONESTEPFCN) -DTERMFCN=$(TERMFCN) \

-DHAVESTDIO

-DMULTI_INSTANCE_CODE=$(MULTI_INSTANCE_CODE) \

-DADD_MDL_NAME_TO_GLOBALS=$(ADD_MDL_NAME_TO_GLOBALS)

89



Real-Time Workshop® Embedded Coder™ Release Notes

Modifications to Main Program Module. The main program module
defines a static main function that manages task scheduling for all supported
tasking modes of single- and multiple-rate models. NUMST (the number of
sample times in the model) determines whether the main function calls
multirate or single-rate code.

However, when the model has continuous time, it is incorrect to rely on NUMST
directly.

When the model has continuous time and the flag TID01EQ is true, both
continuous time and the fastest discrete time are treated as one rate in
generated code. The code associated with the fastest discrete rate is guarded
by a major time step check. When the model has only two rates, and TID01EQ
is true, the generated code has a single-rate call interface.

To support models that have continuous time, update the static main module
to take TID01EQ into account, as follows:

1 Before NUMST is referenced in the file, add the following code:

#if defined(TID01EQ) && TID01EQ == 1 && NCSTATES == 0
#define DISC_NUMST (NUMST - 1)
#else
#define DISC_NUMST NUMST
#endif

2 Replace all instances of NUMST in the file by DISC_NUMST.

rtwtypes.h Replaces tmwtypes.h
The ERT target now generates an optimized rtwtypes.h header file, which
includes only the necessary definitions required by the target. Most generated
code modules require these definitions. This header file replaces the static
tmwtypes.h header file. Note that non-ERT targets still use the tmwtypes.h
header file.

Updating Customized Static Main Program Modules
If you are upgrading and your application uses a customized version of the
static main program module ert_main.c, open the module and make the
following changes:

90



Version 4.0 (R14) Real-Time Workshop® Embedded Coder™ Software

1 Search for RT_MDL. This search brings you to the "Required defines" section.

2 Replace

#define RT_MDL CONCAT(MODEL,_rt0)

with

#define RT_MDL CONCAT(MODEL,_M)

3 Search for tmwtypes.h. This search brings you to the "Includes" section.

4 Add the following include statement.

#include "rtwtypes.h"

5 Delete the following include statements.

#include "tmwtypes.h"
#include "simstruc_types.h"

6 Just below the #include section, add the following preprocessor conditional
code, which determines whether to set up multitasking mode. Previously,
this code resided in simstruc_types.h.

/*========================*
* Setup for multitasking *
*========================*/

#if defined(MT)
# if MT == 0
# undef MT
# else
# define MULTITASKING 1
# endif
#endif

For more information about ert_main.c, see “Static Main Program Module”
in the Real-Time Workshop Embedded Coder documentation.

The MathWorks recommends that you generate a target-specific main
program module rather than use a customized version of the static module,
ert_main.c. For details, see “Generating the Main Program Module” and

91



Real-Time Workshop® Embedded Coder™ Release Notes

“Custom File Processing” in the Real-Time Workshop Embedded Coder
documentation.

Integer Code Only Option Replaced
The Support floating-point numbers option replaces, and inverts the
logic of, the Integer code only option that was supported in previous
releases. To generate pure integer code in new models, deselect the Support
floating-point numbers option.

Note that for compatibility, models that were configured for Integer code
only prior to Release 14 are automatically configured with Support
floating-point numbers deselected, and generate pure integer code.

Rate Grouping Compatibility Issues
To take full advantage of the efficiency of rate grouping:

• Your multirate inlined S-functions must be upgraded to be fully rate
grouping compliant. Existing S-functions continue to operate correctly
without change, but we strongly recommend that you upgrade your
TLC S-function implementations. See “Rate Grouping Compliance and
Compatibility Issues” in the "Data Structures and Program Execution"
chapter of the Real-Time Workshop Embedded Coder documentation.

• If you have previously generated and modified ert_main.c (as is typical of
many ERT-based custom targets) take care to preserve your modifications
and make equivalent changes to the regenerated ert_main.c. After you
have done so, set the TLC variable RateBasedStepFcn to 1, as described
in “Rate Grouping and the Static Main Program” in the "Data Structures
and Program Execution" chapter of the Real-Time Workshop Embedded
Coder documentation.

Real-Time Object Structure Obsoleted by Real-Time Model
Structure
In MATLAB® Release 13, the real-time model (model_M) data structure
replaced the real-time object (model_rtO) data structure. However, use of use
of the older structure was still supported for backward compatibility.

92



Version 4.0 (R14) Real-Time Workshop® Embedded Coder™ Software

Real-Time Workshop Embedded Coder 4.0 requires use of the real-time
model data structure. If you have developed a custom target that references
model_rtO (for example, in a customizedert_main.c module) you must
replace them with references to model_M.

See the “Data Structures, Code Modules, and Program Execution” chapter
of the Real-Time Workshop Embedded Coder documentation for further
information about the real-time model data structure.

rtmIsSampleHit and rtmIsSpecialSampleHit Macros Obsolete
The following macros are now obsolete and should not be used with the ERT
target:

• rtmIsSampleHit

• rtmIsSpecialSampleHit

This does not cause a problem unless you have coded these macros directly
into your TLC files. The recommended practice is to use the following TLC
library functions:

• %<LibIsSFcnSampleHit(tid)>

• %<LibIsSFcnSpecialSampleHit(tid)>

If you have used these functions, they operate transparently.

RTWInfo Properties Assignment Warning Message
This note describes a minor change in behavior when the RTWInfo properties
of a data object are assigned incorrectly.

You can assign a custom storage class to a data object either by using
Simulink Model Explorer, or by setting the RTWInfo properties via
MATLAB commands. (See also the “Custom Storage Classes” chapter in
the Real-Time Workshop Embedded Coder documentation.) If you use
MATLAB commands to assign a custom storage class, you must set both the
RTWInfo.CustomStorageClass and RTWInfo.StorageClass fields. Make
sure that the RTWInfo.StorageClass property is set to 'Custom', as in the
following example.

93



Real-Time Workshop® Embedded Coder™ Release Notes

aa = Simulink.Signal;
aa.RTWInfo.StorageClass = 'Custom';
aa.RTWInfo.CustomStorageClass = 'Struct';
aa.RTWInfo.CustomAttributes.StructName = 'mySignals';

If the RTWInfo.StorageClass is not set correctly as shown above, the
assigned custom storage class (RTWInfo.CustomStorageClass) are ignored
during code generation. In such cases, a warning is displayed at the time
RTWInfo.CustomStorageClass is assigned, for example

foo = Simulink.Signal
foo.RTWInfo.CustomStorageClass = 'Struct'

Warning: The 'CustomStorageClass' property of RTWInfo will have
no effect unless the 'StorageClass' property is set to 'Custom'.

Previously, the warning was displayed at the time RTWInfo.StorageClass
was assigned.

Generating R13SP1+ or R13SP2 Code From
ERT-Based Simulink Models Created In R14 or Later
Due to a design change made in V4.0 (R14) Real-Time Workshop Embedded
Coder, a Real-Time Workshop error occurs when generating R13SP1+ or
R13SP2 code from an ERT-based Simulink model created in R14 or later.

If you use R14 or later to save an ERT-based Simulink model into R13SP1
format (using Simulink File > Save As > Save as type), and then try to
generate code for the model under R13SP1+ or R13SP2, the following error
is displayed:

Error executing build command: Error using ==> make_rtw

Error using ==> tlc_c

Error using ==> tlc_c (InvokeTLC)

Error: Real-Time Workshop Error: Unable to locate ERT header file banner template:

ert_code_template.cgt.

To work around this problem in R13SP1+ or R13SP2, download and install a
replacement version of the file matlabroot/rtw/c/tlc/mw/setuplib.tlc, as
follows:

94



Version 4.0 (R14) Real-Time Workshop® Embedded Coder™ Software

1 Go to the directory matlabroot/rtw/c/tlc/mw and rename the file
setuplib.tlc to setuplib.tlc.old.

2 Click the appropriate link below to download a replacement version of
setuplib.tlc. Place the file in the same directory as the file you renamed.

• setuplib_sp2.tlc

• setuplib_sp1plus.tlc

Note If you are not logged in to your MathWorks Account when you click
the link, you will prompted to log in or create an account.

If you are reading the PDF or hard copy documentation, go to the MATLAB
Help browser or The MathWorks web documentation to use the link.

3 Rename the downloaded file to setuplib.tlc.

95

http://www.mathworks.com/support/bugreports/attachment.html?cbrid=268903&attid;=100
http://www.mathworks.com/support/bugreports/attachment.html?cbrid=268903&attid;=101


Real-Time Workshop® Embedded Coder™ Release Notes

Version 3.2.1 (R13SP2) Real-Time Workshop® Embedded
Coder™ Software

This table summarizes what’s new in Version 3.2.1 (R13SP2):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

No Fixed bugs V3.2.1 product
documentation

New features and changes introduced in this version are described here:

ERT Code Deployment Aids Added to GUI
A new group of buttons has been added to the Embedded Real-Time
(ERT) target options in the Real-Time Workshop pane of the Simulation
Parameters dialog box. To access these buttons, select ERT code deployment
aids from Category menu, as shown in the figure below.

96

http://www.mathworks.com/access/helpdesk_r13/help/toolbox/ecoder/ecoder.html
http://www.mathworks.com/access/helpdesk_r13/help/toolbox/ecoder/ecoder.html


Version 3.2.1 (R13SP2) Real-Time Workshop® Embedded Coder™ Software

The ERT code deployment aids buttons provide quick access to features and
information that can help you to optimize your generated code. The buttons
are:

• Model Assistant Tool - documentation: Click this button to view online
help for the Model Assistant Tool in the MATLAB Help browser. You can
also view this help by typing the MATLAB command

modelassistant('help')

• Model Assistant Tool - configuration: Click this button to open the
Model Assistant Tool for configuration of options.

• Target code customization guide: Click this button to view the
“Advanced Code Generation Techniques” chapter of the Real-Time
Workshop Embedded Coder documentation. The chapter documents useful
code generation, optimization, and customization techniques for the ERT
target. Most of the features described were introduced in Real-Time
Workshop Embedded Coder 3.2 (see the release notes for“Version 3.2
(R13SP1+) Real-Time Workshop® Embedded Coder™ Software” on page 98
for a summary).

• Block summary support table: Click this button to view the Simulink
Block Data Type Support Table in the MATLAB Help Browser. The table
describes the data types that are supported by the blocks in the main
Simulink and Fixed-Point libraries. The table also identifies blocks that
are suitable for production code generation. You can also view the table
by typing the MATLAB command

showblockdatatypetable

• Tutorial: Click this button to open an interactive Real-Time Workshop
Embedded Coder tutorial demo in the in the MATLAB Help Browser. You
can also view the tutorial demo by typing the MATLAB command

ecodertutorial

• Demos: Click this button to open the Real-Time Workshop Embedded
Coder demo suite. You can also view the demos by typing the MATLAB
command

ecoderdemos

97



Real-Time Workshop® Embedded Coder™ Release Notes

Version 3.2 (R13SP1+) Real-Time Workshop® Embedded
Coder™ Software

This table summarizes what’s new in Version 3.2 (R13SP1+):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

No No bug fixes No

New features and changes introduced in this version are:

• “Advanced Code Generation Techniques Documented” on page 98

• “New Code Generation Options” on page 99

• “Auto-Configuration of Models for Code Generation” on page 101

• “Optimized ERT Targets for Fixed-Point and Floating-Point Code
Generation” on page 101

• “Code Templates for Customizing Generated Code” on page 102

• “Custom File Banner Generation” on page 102

• “Passing Model I/O Arguments to the model_step Function” on page 103

Advanced Code Generation Techniques Documented
A new chapter, “Advanced Code Generation Techniques”, has been added
to the Real-Time Workshop Embedded Coder User’s Guide. This chapter
contains complete information on the new features that are summarized
in these release notes. In addition, the chapter documents useful code
generation, optimization, and customization techniques that have not received
wide exposure in previous releases. These include

• How to specify target characteristics (such as word sizes for C data types)
for the build process, so that generated code is correct for deployment on
target hardware

98



Version 3.2 (R13SP1+) Real-Time Workshop® Embedded Coder™ Software

• A general hook file mechanism for adding target-specific customizations
to the build process

New Code Generation Options
Several new code generation options have been added, and some changes
have been made to the layout of Embedded Real-Time (ERT) target code
generation options in the Real-Time Workshop pane of the Simulation
Parameters dialog box.

Options Layout Changes and Additions
The Suppress error status in real-time model data structure option
has been relocated to the ERT code generation options (2) category, as
shown in this figure.

A new code generation option, Pass model I/O arguments as structure
reference, is now available in the ERT code generation options (3)
category, as shown below. This option is described in “Passing Model I/O
Arguments to the model_step Function” on page 103.

99



Real-Time Workshop® Embedded Coder™ Release Notes

A new group of options supporting use of code templates, a powerful and
simple technique for customizing generated code, has been added. These
options are available in the ERT code templates category of the Real-Time
Workshop pane of the Simulation Parameters dialog box (see the figure
below). Code templates are summarized in “Code Templates for Customizing
Generated Code” on page 102.

100



Version 3.2 (R13SP1+) Real-Time Workshop® Embedded Coder™ Software

Auto-Configuration of Models for Code Generation
The Real-Time Workshop Embedded Coder now supports automated
configuration of all (or selected) model parameters during the code generation
process. By automatically configuring a model in this way, you can avoid
manually configuring models. This saves time and eliminates potential errors.

Auto-configuration is performed by executing an M-file (referred to as a
hook file) that is executed as part of the target build process. Therefore,
auto-configuration becomes a function of the target that invokes the hook file.
You can direct the automatic configuration process to save existing model
settings before code generation and restore them afterwards, so that options
the user chooses manually are not disturbed.

The automatic configuration process, and utilities provided to support
auto-configuration, are described in the “Advanced Code Generation
Techniques” chapter of the Real-Time Workshop Embedded Coder User’s
Guide.

Optimized ERT Targets for Fixed-Point and
Floating-Point Code Generation
To make it easier for you to customize a hook file that is optimized for
your target hardware, Real-Time Workshop Embedded Coder provides two
variants of the ERT target:

• RTW Embedded Coder (auto configures for optimized fixed-point
code): To optimize for fixed-point code generation, select this target from
the System Target File Browser.

• RTW Embedded Coder (auto configures for optimized
floating-point code): To optimize for floating-point code generation,
select this target from the System Target File Browser.

The use of these targets is detailed in the “Advanced Code Generation
Techniques” chapter of the Real-Time Workshop Embedded Coder User’s
Guide.

101



Real-Time Workshop® Embedded Coder™ Release Notes

Code Templates for Customizing Generated Code
The ERT target now supports use of custom file processing templates (CFP
templates).

A CFP template is a Target Language Compiler (TLC) file that calls a
high-level applications programming interface (API), referred to as the code
template API. The code template API simplifies generation of custom source
code by letting you

• Generate virtually any type of source (.c) or header (.h) file. A CFP
template can emit code to the standard generated model files (e.g., model.c,
model.h, etc.) or generate files that are independent of model code.

• Organize generated code into sections (such as includes, typedefs,
functions, and more). Your CFP template can emit code (e.g., functions),
directives (such as #define or #include statements), or comments into
each section as required.

• Generate code to call model functions such as model_initialize,
model_step, etc.

• Generate code to read and write model inputs and outputs.

• Generate a main program module.

• Obtain information about the model and the files being generated from it.

CFP templates are described in the “Advanced Code Generation Techniques”
chapter of the Real-Time Workshop Embedded Coder User’s Guide.

Custom File Banner Generation
The ERT target now supports use of banner templates during code generation.
A banner template is a TLC file that specifies banner and trailer comments
that are emitted to generated source (.c) and header (.h) files. Banner
templates are described in the “Advanced Code Generation Techniques”
chapter of the Real-Time Workshop Embedded Coder User’s Guide.

102



Version 3.2 (R13SP1+) Real-Time Workshop® Embedded Coder™ Software

Passing Model I/O Arguments to the model_step
Function
A new code generation option, Pass model I/O arguments as structure
reference, lets you control how model inputs and outputs at the root level of
the model are passed in to the model_step function. This option is available
in the ERT code generation options (3) category of the Real-Time
Workshop pane of the Simulation Parameters dialog box. When Generate
reusable code is selected, Pass model I/O arguments as structure
reference is enabled, as shown in this figure.

When Pass model I/O arguments as structure reference is deselected
(the default), each root-level model input and output is passed to model_step
as a separate argument. When this option is selected, all root-level inputs
are packed into a struct that is passed to model_step as an argument.
Likewise, all root-level outputs are packed into a struct that is also passed
to model_step as an argument. Selecting Pass model I/O arguments as
structure reference can reduce the number of arguments passed in to
model_step.

See the “Code Generation Options and Optimizations” chapter of the
Real-Time Workshop Embedded Coder User’s Guide for further details.

103



Real-Time Workshop® Embedded Coder™ Release Notes

Version 3.1 (R13SP1) Real-Time Workshop® Embedded
Coder™ Software

This table summarizes what’s new in Version 3.1 (R13SP1):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

No No bug fixes No

New features and changes introduced in this version are described here:

Model Assistant Tool
The Model Assistant Tool is a utility that lets you configure a model for
code generation quickly. The Model Assistant Tool also helps you to identify
aspects of your model that impede production deployment or limit code
efficiency. You can use the Model Assistant Tool at any point in your design
cycle, as it is completely independent from the code generation process.

The Model Assistant Tool is designed primarily for use with Real-Time
Workshop Embedded Coder. It works most effectively with the Embedded
Real-Time (ERT) target and with ERT-based targets (such as the Embedded
Target for Motorola MPC555). It will also operate with other targets.

The figure below shows the top-level window of the Model Assistant Tool.

104



Version 3.1 (R13SP1) Real-Time Workshop® Embedded Coder™ Software

Four main components of the Model Assistant Tool provide a powerful and
centralized interface for configuring settings for Simulink blocks, Stateflow®

charts, models and subsystems. You select these components via the four
buttons at the top of the Model Assistant display:

• General Code Generation Goals

• Detailed Code Generation Goals

• Model Advisor

• Search and Modify

These components are summarized in the next sections.

General Code Generation Goals
This component lets you quickly configure code generation settings based on
specific goals, such as whether to optimize for RAM or ROM usage. Once you
have decided the overall optimization and tradeoffs for your application, the
Model Assistant Tool will select the model settings that best suit your goals.

105



Real-Time Workshop® Embedded Coder™ Release Notes

Detailed Code Generation Goals
This component presents a centralized interface to the available code
generation options. Options are grouped by category, and are applied across
products.

Model Advisor
The Model Advisor component is particularly useful early in the design
cycle. It provides an analysis of your model to ensure that you best utilize
Real-Time Workshop Embedded Coder. You can check selected aspects of
your model settings (for example, to identify possible inefficiencies such as
blocks that generate saturation and rounding code) or choose Select All for a
comprehensive analysis.

Search and Modify
This component is a powerful model search and modify engine. It reduces the
effort of configuring a model block by block. The search feature helps you
find attributes of blocks, lines, input ports, output ports, and annotations
quickly. The modify feature lets you perform rapid batch operations on the
search results. Frequently performed tasks are packaged conveniently into
a single button click.

The Search and Modify component includes the following features:

• The Frequent tasks page lets you quickly perform common actions.

• The Simulink object search page lets you specify a general Simulink
object search and modify action. This search mechanism is useful when you
know the specific names of underlying attributes.

• The Stateflow object search page lets you quickly configure the Stateflow
data in your model. This is particularly useful for converting data from
floating point to fixed-point types.

• The Search and replace Simulink text page lets you quickly modify text
for objects in Simulink. For example, you can change all occurrences of
'K1' to 'K2'. The semantics of the search and replace are the same as for
the Stateflow search and replace tool that ships with Stateflow.

• Two Parameter name search mechanisms are provided:

106



Version 3.1 (R13SP1) Real-Time Workshop® Embedded Coder™ Software

- Search and modify parameters using prompt strings. This search
mechanism is useful when you know the parameter by its dialog prompt
string, but you don’t know the name of the underlying attribute.

- "Fuzzy" search using property and/or value pairs. This search
mechanism is useful for isolating the name of an underlying attribute.

Using the Model Assistant Tool
You run Model Assistant Tool from the MATLAB command line, via the
modelassistant command. Before invoking the Model Assistant Tool, make
sure that the desired target (such as the ERT target) is selected in the Target
Configuration section of the Real-Time Workshop pane of the Simulation
Parameters dialog box.

The following examples illustrate the modelassistant command syntax and
its possible arguments.

To obtain detailed help on the Model Assistant Tool, type

modelassistant('help')

To invoke the Model Assistant Tool for the root system of a model, type

modelassistant('model')

where model is the name of the model.

To invoke the Model Assistant Tool for a particular subsystem in a model, type

modelassistant('subsystem')

where subsystem is the name of the subsystem.

You can also invoke the Model Assistant Tool for models and systems using
the built-in Simulink bdroot, gcb, and gcs commands. For example:

modelassistant(gcs)

107



Real-Time Workshop® Embedded Coder™ Release Notes

Further Help and Demos
The above sections have summarized the main features of the Model Assistant
Tool. To obtain full online documentation on the Model Assistant Tool, type

modelassistant('help')

There are also three demo models available for the Model Assistant Tool:
advisordemo1, advisordemo2, and advisordemo3.

108



Compatibility Summary for Real-Time Workshop® Embedded Coder™ Software

Compatibility Summary for Real-Time Workshop®

Embedded Coder™ Software
This table summarizes new features and changes that might cause
incompatibilities when you upgrade from an earlier version, or when you
use files on multiple versions. Details are provided in the description of the
new feature or change.

Version (Release) New Features and Changes with Version
Compatibility Impact

Latest Version
V5.1 (R2008a)

None

V5.0 (R2007b) None

V4.6.1 (R2007a+) None

V4.6 (R2007a) None

V4.5 (R2006b) See the Compatibility Considerations
subheading for each of these new features or
changes:

• “Maximum Length Enforced for
Auto-Generated Identifiers in Generated
Code” on page 36

• “New Default Value for
IncludeERTFirstTime Model Configuration
Parameter” on page 38

V4.4.1 (R2006a+) None

V4.4 (R2006a) See the Compatibility Considerations
subheading for each of these new features or
changes:

• “Identifier Format Control Parameters for
Code Generation” on page 44

• “New sl_customization API for Customizing
Data Objects” on page 49

109



Real-Time Workshop® Embedded Coder™ Release Notes

Version (Release) New Features and Changes with Version
Compatibility Impact

V4.3 (R14SP3) See the Compatibility Considerations
subheading for this new feature or change:

• “ERT Automatic Configuration Changes” on
page 58

V4.2.1 (R14SP2+) None

V4.2 (R14SP2) See the Compatibility Considerations
subheading for this new feature or change:

• “File custom_user_type_registration.m No
Longer Automatically Called During Code
Generation” on page 64

V4.1 (R14SP1) None

V4.0 (R14) See:
• “Upgrading from R13SP1+ or R13SP2” on

page 85

• “Generating R13SP1+ or R13SP2 Code From
ERT-Based Simulink Models Created In R14
or Later” on page 94

V3.2.1 (R13SP2) None

V3.2 (R13SP1+) None

V3.1 (R13SP1) None

110


	toc
	Summary by Version
	Using Release Notes
	What’s in the Release Notes
	New Features and Changes
	Version Compatibility Considerations
	Fixed Bugs and Known Problems
	Version 5.1 (R2008a) Real-Time Workshop ® Embedded Coder Softwar
	New AUTOSAR Compliant Code Generation Capability and Demos
	Bidirectional Traceability for Stateflow Charts and Embedded MAT
	Generated Code Enhancements
	Function Prototype Control Enhancements
	Improved MISRA-C Compliance for Matrix Math Utilities and Lookup
	math.h Header File Inclusion Now Controllable Through Target Fun
	“What’s This?” Context-Sensitive Help Available for Simulink Con
	New and Enhanced Demos

	Version 5.0 (R2007b) Real-Time Workshop ® Embedded Coder Softwar
	New Target Function Library (TFL) API for Mapping Math Functions
	Bidirectional Traceability Now Supported Through Automated Block
	HTML Code Generation Report Adds Traceability Report
	Elimination of Wrapper Generated by R2007a model_step Function P
	Optimized External I/O Data Structures with Function Prototype C
	MISRA-C Compliance Enhanced for Enabled Subsystem Code
	User-Defined Data Classes Can Reference Custom Storage Classes f
	Data Type Assistant Support for MPT Objects
	New Target Configuration Parameter for Enabling Real-Time Worksh
	New Interactive Guided Introduction Demo
	New and Enhanced Demos

	Version 4.6.1 (R2007a+) Real-Time Workshop ® Embedded Coder Soft
	Version 4.6 (R2007a) Real-Time Workshop ® Embedded Coder Softwar
	Controlling Step Function Prototypes for Models
	New ModelStepFunctionPrototypeControlCompliant Target Configurat
	New ERT Target for Generating Host-Based Shared Libraries
	Enhanced Software-in-the-loop (SIL) Testing with New Portable Wo
	New Code Style Options for Controlling Expression Optimizations 
	Enhanced MISRA-C Compliance
	New and Enhanced Demos

	Version 4.5 (R2006b) Real-Time Workshop ® Embedded Coder Softwar
	Efficiency Enhancements in Generated Code
	Fixed-Point Code Generation Support for Enhanced N-Dimensional L
	Ability to Control Use of Parentheses in Generated Code
	Enhanced HTML Code Report Performance and Content
	New General-Purpose OSEK/VDX Real-Time Operating System (RTOS) E
	New ’error’ Hook Method for STF_make_rtw_hook.m
	Maximum Length Enforced for Auto-Generated Identifiers in Genera
	Compatibility Considerations

	New Default Value for IncludeERTFirstTime Model Configuration Pa
	Compatibility Considerations

	Use of firstTime Argument to model_initialize Function to Be Dis
	"Source of initial values" Option for MPT Data Objects Removed
	New and Enhanced Demos
	New Reference Documentation

	Version 4.4.1 (R2006a+) Real-Time Workshop ® Embedded Coder Soft
	Version 4.4 (R2006a) Real-Time Workshop ® Embedded Coder Softwar
	Nonvirtual Subsystem Option for Generating Modular Function Code
	Exporting Function-Call Subsystems
	Identifier Format Control Parameters for Code Generation
	Compatibility Considerations

	New and Changed Memory Section Capabilities
	New sl_customization API for Registering Real-Time Workshop Buil
	New sl_customization API for Customizing Data Objects
	Compatibility Considerations

	mpt Signal Object Enhancements
	New IncludeERTFirstTime Model Configuration Parameter
	New ERTFirstTimeCompliant Target Configuration Parameter
	firstTime Argument to model_initialize Function
	Data Object Wizard Script for Labeling Root I/O Signals Based on
	New and Enhanced Demos

	Version 4.3 (R14SP3) Real-Time Workshop ® Embedded Coder Softwar
	Data Type Replacement
	HeaderFile Property Now Optional as Part of GetSet Data Object
	Data Object Wizard Enhancements
	Global Data Stores Can Be Initialized Using mpt.Signal Object’s 
	ERT Automatic Configuration Changes
	Compatibility Considerations

	Documentation Enhancements

	Version 4.2.1 (R14SP2+) Real-Time Workshop ® Embedded Coder Soft
	Version 4.2 (R14SP2) Real-Time Workshop ® Embedded Coder Softwar
	C++ Target Language Support
	External Mode Support for ERT VxWorks Example Target
	Custom Storage Classes with ERT S-Functions
	Consistency Checking for ERT Target Options
	Model Explorer “Alias Override Naming Rule” Check Box Removed
	Model Explorer Data Object Header File No Longer Generated If He
	Enhanced MPF Documentation of Managing Data Dictionary
	File custom_user_type_registration.m No Longer Automatically Cal
	Compatibility Considerations


	Version 4.1 (R14SP1) Real-Time Workshop ® Embedded Coder Softwar
	Significant Documentation Corrections

	Version 4.0 (R14) Real-Time Workshop ® Embedded Coder Software
	Expanded Documentation Collection
	New ERT Target Options User Interface
	GRT and ERT Target Unification
	Support for Continuous Time Blocks
	Support for Continuous Solvers
	Support for Noninlined S-Functions
	Module Packaging Features
	Introduction
	MPF Feature Summary

	ASAP2 File Generation Changes
	Code Generation with User-Defined Data Types
	Enhanced Custom Storage Classes
	Compatibility with Previous CSCs

	More Efficient Multi-Rate Multitasking Code Generation
	More Efficient Task Scheduling for RTOS Targets
	New Callbacks Defined for System Target Files
	New Option to Control Template Makefile Output Display
	Demo Updates
	Upgrading from R13SP1+ or R13SP2
	TMF File Update Required for Use with Release 14 or Higher If Su
	Custom Storage Class Compatibility Issues
	Defining and Displaying Custom Target Options
	Supporting Model Referencing in Custom Targets
	Supporting Continuous Time in Custom Targets
	rtwtypes.h Replaces tmwtypes.h
	Updating Customized Static Main Program Modules
	Integer Code Only Option Replaced
	Rate Grouping Compatibility Issues
	Real-Time Object Structure Obsoleted by Real-Time Model Structur
	rtmIsSampleHit and rtmIsSpecialSampleHit Macros Obsolete
	RTWInfo Properties Assignment Warning Message

	Generating R13SP1+ or R13SP2 Code From ERT-Based Simulink Models

	Version 3.2.1 (R13SP2) Real-Time Workshop ® Embedded Coder Softw
	ERT Code Deployment Aids Added to GUI

	Version 3.2 (R13SP1+) Real-Time Workshop ® Embedded Coder Softwa
	Advanced Code Generation Techniques Documented
	New Code Generation Options
	Options Layout Changes and Additions

	Auto-Configuration of Models for Code Generation
	Optimized ERT Targets for Fixed-Point and Floating-Point Code Ge
	Code Templates for Customizing Generated Code
	Custom File Banner Generation
	Passing Model I/O Arguments to the model_step Function

	Version 3.1 (R13SP1) Real-Time Workshop ® Embedded Coder Softwar
	Model Assistant Tool
	General Code Generation Goals
	Detailed Code Generation Goals
	Model Advisor
	Search and Modify
	Using the Model Assistant Tool
	Further Help and Demos


	Compatibility Summary for Real-Time Workshop ® Embedded Coder So



